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SUMMARY

The goal of neuromorphic engineering is to create electronic systems that

model the behavior of biological neural systems. Neuromorphic systems can leverage

a combination of analog and digital circuit design techniques to enable computa-

tional modeling, with orders of magnitude of reduction in size, weight, and power

consumption compared to the traditional modeling approach based upon numerical

integration. These benefits of neuromorphic modeling have the potential to facilitate

neural modeling in resource-constrained research environments. Moreover, they will

make it practical to use neural computation in the design of intelligent machines,

including portable, battery-powered, and energy harvesting applications. Floating-

gate transistor technology is a powerful tool for neuromorphic engineering because it

allows dense implementation of synapses with nonvolatile storage of synaptic weights,

cancellation of process mismatch, and reconfigurable system design.

A novel neuromorphic hardware system, featuring compact and efficient channel-

based model neurons and floating-gate transistor synapses, was developed. This sys-

tem was used to model a variety of network topologies with up to 100 neurons. The

networks were shown to possess computational capabilities such as spatio-temporal

pattern generation and recognition, winner-take-all competition, bistable activity im-

plementing a "volatile memory", and wavefront-based robotic path planning. Some

canonical features of synaptic plasticity, such as potentiation of high frequency in-

puts and potentiation of correlated inputs in the presence of uncorrelated noise, were

demonstrated. Preliminary results regarding formation of receptive fields were ob-

tained. Several advances in enabling technologies, including methods for floating-

gate transistor array programming, and the creation of a reconfigurable system for
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studying adaptation in floating-gate transistor circuits, were made.
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Chapter I

THE BIG PICTURE

1.1 Goals: neural and analog computing

1.1.1 Why study neural computing?

When I received a basic introduction to neuroscience as a junior in high school, I

enthusiastically came to the conclusion that all human behavior is a result of brain

activity, which we can understand mechanistically at the neuronal level. Thus, all of

the mysteries of the human mind - our ability to reason, to communicate using lan-

guage, to experience emotions, the variety of different personality types, our capacity

for artistic expression and intellectual discovery, our seemingly boundless capability

to learn new skills and information, and even consciousness, that elusive and intan-

gible phenomenon that lies at the center of our very identities - seemed to become

accessible through the study of neuroscience. In these speculations, I was following

in the footsteps of many scientists and philosophers throughout history. The first

group of such thinkers with the tools, knowledge, and ambition to attempt to really

test hypotheses about these principles by creating engineered systems with the capa-

bilities of the brain was the artificial intelligence (AI) community, which kicked off

these efforts in the mid 20th century. Many of the founders of this field expected

the lofty goal of designing a human-like intelligence to be solved relatively quickly.

For example, Marvin Minsky famously published in 1967 that “within a generation...,

the problem of creating artificial intelligence will substantially be solved”. While the

early efforts in AI led to innovations that are still influential today, they fell far short

of these high expectations.

The failure of AI to fulfill these ambitious expectations was partly due to a failure

1
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to fully appreciate the difficulty of basic problems of perception and motor control,

which seem so easy because we generally perform them without conscious effort. Tasks

such as recognizing spoken words and picking faces out of an image have proven to

be difficult, and only recently (after several decades of development of computing

hardware and algorithms) has the engineering community begun to produce some-

what reliable solutions for them. In the motor control domain, the robust control of

bipedal locomotion (or to the layman, “walking”), continues to be a topic of cutting-

edge research. While decades of diligent research has produced some impressive and

promising results for perception and motor control tasks, our solutions to these “low-

level” problems still have significant drawbacks when compared to their neural coun-

terparts. Engineered solutions for perception and motor control often perform more

poorly (compared to neural systems) in noisy environments or across wide variations

in signal dynamic range. Moreover, the important system metrics of size, weight, and

power are generally orders of magnitude higher in engineered systems (consider, for

example, the real-time processing for avionics, image processing, and path planning

that is performed by the brain of a fly). So what about our progress on the more

“high-level” cognitive functions of the brains such as language processing, reasoning

and planning, social interactions, and learning? Research in all of these topics is

ongoing, but our understanding of the neural mechanisms that support these features

of intelligence is poor.

Clearly then, the goal of mechanistically understanding brain function is far from

completed, and will require a coordinated and sustained effort from the scientific and

engineering communities. So is it worth the effort? What is there to gain by reach-

ing this goal? As with most questions about the motivation for scientific inquiry,

there are two distinct philosophies. The first is a practical one: if the mechanisms

underlying brain function can be understood well enough to mimic in engineered

systems, then one can envision a variety of immediate applications for intelligent
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machines in the consumer, medical, manufacturing, and military markets. Also this

understanding of brain function could inform more effective treatment and preven-

tion of pathologies such as epilepsy, Parkinson’s disease, and Alzheimer’s disease, and

could allow for prosthetic devices that interface effectively with the nervous system.

The second answer is purely aesthetic (in my experience, for the scientists who pas-

sionately commit their lives to research, this motivation is often at least as strong

as the practical one): convincing ourselves that we understand the mysteries of the

human mind/brain would be an immensely satisfying achievement from a philosoph-

ical/intellectual standpoint. This intense drive to understand the workings of our

world seems to be fundamental to the human psyche, and history has shown that

individuals following this drive often unwittingly contribute mightily to the march of

technological progress.

1.1.2 The importance of computational modeling

In the pursuit of understanding brain function, the “ground truth” for evaluating

hypotheses must be measurements made on brains. The modern methods of experi-

mental neuroscience provide an impressive array of ways to make such measurements,

including electrophysiology on tissue cultures or animal models, anatomical studies,

manipulations using molecular genetics, and both structural and functional imaging

techniques. As important as these experimental studies are, computational modeling

is equally important for several reasons. Firstly, networks of neurons have sufficiently

complicated dynamics that it is generally difficult for the unaided intellect to fully

appreciate the consequences of a set of assumptions. For example, a scientist may

propose a guess as to the network topology that is present in a given neural circuit,

but may not be able to tell whether that network topology will actually produce the

patterns of activity that are observed in experiments on that circuit. It is simply

too much information to picture in one’s head without the aid of a computational
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tool. A second advantage offered by computational modeling is that it can be used

to expand the “field of view” of experimental studies. Specifically, experiments are

severely limited with regard to how many of the system’s degrees of freedom are

observable, as well as what types of manipulations can be made. In contrast, it is

feasible in computational studies to track any dynamical variable that is of interest,

and to simulate an identical experiment multiple times, systematically varying any

arbitrary aspect of the system (e.g. synaptic conductance, dendrite shape, distribu-

tion of ion channels, network topology, etc). Both of these advantages ultimately lead

to making better hypotheses for experimental measurements. This means that the

costly, time-consuming, and difficult experimental work can be done as efficiently as

possible.

One final advantage to performing computational modeling studies is that a model

that successfully demonstrates an aspect of brain function such as word recognition

or face recognition also serves as a “proof of concept” for an implementation of this

functionality in an engineered system. Thus, one good approach to computational

modeling is to hypothesize principles of neural computation that subserve a particular

function (such as face recognition), and then construct networks from those principles

and evaluate their performance on the function of interest. In the best case, the

principles that result in good performance on the applications will provide successful

hypotheses for predicting outcomes in neuroscience experiments, in which case it is

reasonable to claim to have gained insight into the scientific question of how brains

work. In the worst case, those principles will generate hypotheses that will prove

inconsistent with neuroscience experiments. Even in this case, a viable guess as to

how the brain functions has been ruled out, which also constitutes scientific progress.

Moreover, in both cases, useful knowledge for designing intelligent machines has been

generated.

Given the roles of computational modeling of neural systems outlined above, it is
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clear that speed, ease of use, and ease of technology transfer to applications are key

metrics of any approach for such modeling efforts. Speed and ease of use are important

so that scientists can rapidly perform many modeling studies without being hampered

by run time or long learning curves of the computational tools. Ease of technology

transfer becomes important as soon as a computational principle is discovered that

could be useful when applied to a “real-world” problem. If the nature of the modeling

approach is such that it easily translates into a product, then technology benefits from

the discovery in addition to pure science. In language used earlier in this section,

such translation results in a practical payoff from the research effort in addition to

the aesthetic payoff.

1.1.3 Computational modeling by numerical integration

The most popular method for performing computational modeling in neuroscience

is numerical integration of model equations using digital computers. This method

offers the modeler an unfavorable trade-off between speed, ease of use, and ease

of technology transfer. The most easy-to-use approach is offered by the personal

computer. On a personal computer, a real-time simulation is limited to somewhere

between 1 and a few hundred neurons, and between 100 and a few thousand synapses,

depending on the level of detail in the models, the level of activity in the network, and

the software implementation details. The high end of this range is achievable only

by using the most simplistic models and by extensively optimizing the simulator.

The personal computer approach is fairly easy to use. Its size, weight, and cost are

not prohibitive for translation to high-end applications (such as medical or military),

but may be prohibitive for consumer applications. It requires a few hundred watts

of power, which rules out many battery powered or energy harvesting systems as

possible application domains. If the personal computer implementation was done

without much optimization of the software or hardware, a clever engineer may cut

5



www.manaraa.com

as much as a factor of 10 from the size, weight, and power metrics in the process of

translation.

The speed of the computation may be increased by using a cluster instead of a

single personal computer. In this case, the ease of use generally decreases substan-

tially due to the difficulty of writing code that efficiently takes advantage of parallel

processors (unless the problem can be partitioned into independent tasks for each pro-

cessor, as in a parameter sweep). The speed is increased by a factor that is generally

somewhat less than the number of processors in the cluster (how much less depends

on the software and hardware implementations). The cost becomes prohibitive for

translation to anything other than low volume, high end applications. The power

increases by at least the number of processors, and the size and weight increase as

well. This type of implementation is not suitable for most robotics applications due

to size, weight, and power constraints.

The fastest performance for numerical integration-based neural simulation is achieved

by the large-scale supercomputer. An example of such an approach was recently pub-

lished by IBM, who used their Blue Gene supercomputer, featuring 147,456 parallel

processors, to perform a simulation of a network of 1 billion single-compartment in-

tegrate and fire neurons and 10 trillion learning synapses at 1/100th real time [3].

This simulation required 1.4MW of power, and the hardware that it requires fills a

room. Clearly such a system is the opposite of easy to use and is virtually useless for

translation to applications. The cost of such a system is such that only the wealthiest

entities such as major corporations and governments can afford to own one.

In the recent past, some neuroscientists expected the trade-off presented by the

method of numerical integration to rapidly become more favorable as a result of con-

tinued improvements in digital computing technology. For instance, in 2005 Eugene

Izhikevich performed a simulation of 10 billion point neurons and 100 trillion (non-

learning) synapses [39]. He performed the simulation on a cluster of 27 processors,
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which simulated 1 second of model time in 50 days. At that time, he published a

projection of how this performance would improve over time. The premise of the

projection was simple; he assumed that processor clock speed will double every 18

months for at least the next 40 years (which was as far as the projection went), and

that the simulation time is inversely proportional to the product of clock speed and

number of processors. Comparing the clock speeds of typical processors on the mar-

ket today (3-4 GHz) to the projected clock speed for this year (48 GHz) shows that

even just a few years after the projection, it is obvious that this projection was far

too optimistic. In fact, the trend for clock speed seems to be much more accurately

modeled as a flat line than as a rapidly growing exponential. While the clock speed

is more or less holding steady, it is true that the number of transistors on a chip is

generally continuing to increase, especially as processor manufacturers increase the

number of cores that are integrated into a single chip. It is reasonable to expect that

this will increase the speed and ease of use for the user of the desktop system, however

a fundamental limitation remains. The increases in computing power are coming at

the cost of increases in power consumption, as observed in [45]. This constitutes a

major obstacle for translation of any large-scale neural computing algorithm to any

portable, battery-powered, or energy harvesting application. This key insight about

the fundamental limitations of the numerical integration approach was foreseen over

20 years ago by Carver Mead [46].

1.1.4 The neuromorphic approach

Having acknowledged the limitations of computational modeling that is based on

numerical integration, the obvious question is whether a viable alternative exists.

The answer to this involves a change in thinking about what it means do computing.

Consider the example of aircraft design. The equations governing fluid flow around

an aircraft in flight are difficult to solve accurately, leading to high costs in terms of
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time, money, and infrastructure for solutions based on digital computing. However,

aerospace engineers can place scale models of aircraft in a wind tunnel, and can then

experimentally ascertain the behavior of a given aircraft under a variety of conditions.

One interesting way to think about this approach is that the fluids in the wind tunnel

are being used as a computer to calculate solutions to the relevant equations of fluid

mechanics, which they do naturally by obeying those equations. Once the physical

apparatus for the experiment is constructed, this computation is performed quickly

and efficiently. Of course, this computer is highly specialized for computing fluid

flows. It is useless for solving most of the problems that we typically perform on

digital computers.

The goal of neuromorphic engineering in general, and this work in particular,

is to create just such a specialized tool for computing the dynamical behavior of

neurons. Using the powerful technology of integrated circuit (IC) fabrication, vast

numbers of circuits that are governed by equations similar to those that describe

neurons and synapses can be constructed on a tiny chip. On the one hand, this

approach can be thought of as an experimental platform for network electrophysiology

that affords a level of observability and control well beyond what is achievable with

experiments on tissues. On the other hand, it can be regarded as a new type of

computer, one that is specialized for the task of simulating networks of neurons,

and is therefore highly efficient at this task. From the latter perspective, if the

model circuits can be implemented using low-power design techniques, and can be

densely integrated into single IC, then the elegance of this approach will translate

to tremendous improvements in the metrics that determine ease (or even feasibility)

of translation to applications. In short, I believe that this approach can yield tools

that will profoundly push forward the study of neural computation by making fast,

easy-to-use computational models of neural networks widely available, and will also

provide a practical technology for implementing principles of neural computation in
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intelligent machines.

The idea of making circuits that perform as “scale models” of networks of neu-

rons has been around since the early days of AI, with Frank Rosenblatt’s “Mark 1”

and “Tobermory” being perhaps the earliest notable examples (1960 and 1962)[47].

Early approaches such as this did not model the spiking behavior of neurons, so they

constitute a coarser approximation than approaches that employ realistic models of

the excitable dynamics of the individual cells. These two machines in particular were

built from thousands of discrete devices, so they were physically large and their con-

struction required an extraordinary effort of meticulous manual labor. Beginning in

the early 1980s, Carver Mead resumed these efforts, this time leveraging the rapidly-

developing “very large scale integration” (VLSI) technology by which ICs are designed

and fabricated, as well as employing a modeling approach that sought to more faith-

fully capture the dynamics of biological neurons. His efforts created the modern

field of neuromorphic engineering. Research in neuromorphic engineering has contin-

ued from that time, and it is continuing to grow (in part due to funding from large

projects such as SyNAPSE and FACETS), but because the community is so much

smaller than that of the multi-billion dollar industry for making digital computers,

the neuromorphic technology is at an earlier stage of development than digital com-

puting technology. Still, because the elegance of the neuromorphic approach will lead

to large advantages in the important metrics of size, weight, and power consumption,

the long-term outlook appears to be great for neuromorphic engineering.

1.1.5 Analog computing

As demonstrated by some of the successes of Rosenblatt’s models and their descen-

dents (which includes multi-layer perceptrons), effective approaches to neural-inspired

computing can share some high level features with neural systems without accurately
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modeling the membrane dynamics of the individual neurons. Specifically, where ana-

log circuits can be designed to implement a particular function in an elegant way,

significant savings of power are possible. One example is the 1000x efficiency im-

provement for vector-matrix multiplication shown in [16]. An analysis based on just

the fundamental tradeoffs encountered in circuit design concludes that systems with

relatively low signal to noise ratio (SNR) requirements will be more efficiently imple-

mented using analog representations than digital ones [55].

One class of tools that has been created for exploring the possibilities of analog

computation is the field programmable analog array (FPAA). As the name suggests,

the FPAA is essentially the analog equivalent of the field programmable gate array

(FPGA). FPAAs have a variety of analog circuits and devices, interconnected by a

configurable switch matrix, which allows the synthesis of many circuits and systems

using only a single chip. This allows for exploration of novel circuits and applications

for analog computing (or synonymously, analog signal processing). A large number

of applications have been demonstrated on FPAAs [49, 50, 59, 58, 66].

1.2 Methods: VLSI and floating-gate transistor technology

For both neuromorphic engineering and analog computing, the most important en-

abling technology is VLSI IC fabrication, a technology that allows billions of elec-

tronic circuit elements to be wired together on a single silicon chip. Employing this

technology allow designers to leverage computer aided design tools and sophisticated

manufacturing technology to make systems of a complexity that would be unimag-

inable if the manual design and assembly techniques of the past were relied upon.

In particular, the IC technology of choice for this work is the “complementary metal

oxide semiconductor” (CMOS) process, wherein most of the circuit elements on the

chip are “metal oxide semiconductor field effect transistors” (MOSFETs). CMOS is

an excellent technology for this application for many reasons. Firstly, the charge
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transport in MOSFETs is similar to the transport across the cell membrane through

ion channels, which determines the electrical behavior of neurons. Secondly, CMOS

is a very mature technology from a manufacturing and a circuit design standpoint.

As a result, there is a large “toolbox” of canonical circuit design techniques available

in CMOS, and the manufacture of newly-designed chips can be performed very reli-

ably. Furthermore, if the volume of production of the chips increases, it is possible

to obtain significant economies of scale.

Another advantage of using CMOS technology is that it enables the use of a

type of MOSFET called a floating-gate transistor. This is a standard MOSFET

except that its gate terminal is electrically isolated (or floating), and the effective

gate terminal of the floating-gate device is a capacitor that couples electrostatically

to the gate of the MOSFET. The voltage on the floating gate is thus determined

by the voltage on the control gate terminal as well as the charge on the isolated

gate node. This charge stays fixed unless the device is subjected to conditions that

cause tunneling or hot carrier injection, which are the processes used to manipulate

the charge on these devices. As a result, the device is simultaneously a standard

MOSFET and a device for stable storage of an analog nonvolatile memory. The

programmable parameters of the devices are useful for combating the pesky problem of

device mismatch, storing synaptic weights of model synapses, and efficiently creating

circuits that can be configured in a variety of different ways. Additionally there is

a class of useful building blocks for analog circuit design that rely on this degree of

freedom.

When a negative overdrive voltage is applied to the gate of a MOSFET, it oper-

ates in a regime called subthreshold, in which the transport is dominated by diffusion

of minority carriers, much like in a bipolar junction transistor (BJT). A subthreshold

MOSFET, like a BJT, has an exponential I-V relationship. Designing circuits for
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operation in this regime gives access to many orders of magnitude of current, includ-

ing the very low currents that enable ultra-low power performance. Furthermore,

the allowable voltage swing is maximized by subthreshold MOSFETs, which allows

them to operate well with very low voltage supply rails. This is another significant

advantage for low power design. A final advantage of subthreshold operation is that

the exponential form is a useful building block for implementing many computations.

For instance, a shift in gate voltage represents a multiplication in current, which is a

principle that can be applied to build a highly efficient analog vector-matrix multiplier

using a matrix of floating-gate transistors operating in subthreshold.

The final element that plays a central role in this work is the analog floating-gate

array. This is simply a large group (tens or hundreds of thousands) of floating gate

transistors on a single chip, in addition to addressing infrastructure and other cir-

cuitry that allows for selective programming of each floating gate transistor on the

array. Floating-gate arrays allow an elegant implementation of the FPAA systems

described in Section 1.1.5. They reduce the parasitics of the switch devices in the

switch matrices, and they allow the switch matrix to function as a useful part of the

circuit (a bias generator or a vector-matrix multiplier, for instance). The infrastruc-

ture for the array also makes it easy to leverage the benefits of floating gates in the

design of the circuits outside of the switch matrix. In the context of a neuromorphic

IC, a floating-gate transistor array can be used as a very dense implementation of

synapses, which have permanent local storage of synaptic weights, and are capable of

implementing synaptic plasticity.

1.3 Achievements: from devices to systems

A universal truth of modern science and engineering is that we can only see farther by

standing on the shoulders of giants. The work that I present here is no exception. I

did not come up with the idea of neuromorphic engineering or analog computing. Nor
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did I make more than a few minor contributions in the form of basic circuit blocks

in the systems presented here. I did, however, make substantial contributions to

the field, including improving the understanding of the behavior of the floating-gate

devices, creating tools (software, hardware, and algorithms) that allow effective use of

ICs that feature floating-gate arrays, designing complex and sophisticated systems for

neuromorphic engineering and analog computation, and exploring the computation

that can be achieved with the use of these novel tools.

In the remainder of this document, I will describe this work in further detail.

Chapter 2 covers the software, hardware, and algorithms that I developed in order to

support the use of systems with floating-gate transistor arrays. Chapter 3 describes

new findings about the characteristics of the floating-gate transistors with regard to

the tunneling processes that are used for programming. It also includes analysis of

optimal techniques for the use of tunneling in the setting of arrays of floating gates.

The work described in Chapters 2 and 3 forms a technical foundation, without which

the system results in the later chapters would not have been possible. Chapter 4

describes my design of a novel type of FPAA, one that enables floating-gate transistors

to undergo injection and tunneling while processing signals, thus supporting a class of

adaptive circuits with a rich and interesting extra dimension of dynamics. Chapter 5

presents the full details of a neuromorphic IC that I designed. It also shows measured

results from the system illustrating the operation of the circuits. In Chapter 6, this

neuromorphic IC is put to work as a simulation engine for a variety of networks.

Networks are demonstrated to perform arbitrary spatio-temporal pattern generation

and recognition, “winner-take-all” competition, bistable oscillations capable of acting

as a “volatile memory”, and optimal path planning. Chapter 7 describes the results

from simulations of networks in which the synapses learn by spike-timing dependent

plasticity (STDP). Finally, Chapter 8 offers some concluding remarks, as well as my

thoughts about the future of this line of research.
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Chapter II

BUILDING BLOCKS FOR FLOATING-GATE SYSTEMS

Experimental measurements of ICs can require sophisticated infrastructure in the

form of hardware and software for testing. This is especially true when the IC of in-

terest is a very complex chip with many inputs and outputs. If the IC contains analog

floating-gate transistors, this adds an extra element of complexity, since testing gen-

erally requires programming of the floating gates. This chapter discusses the design

of hardware, software, and algorithms to facilitate computation on neuromorphic and

analog computing ICs that contain floating-gate arrays. The results are demonstrated

by showing some measured data from the FPAA described in detail in [7].

2.1 Hardware platform

The hardware for programming and testing floating-gate array based ICs consists of

a printed circuit board (PCB), depicted in Figure 1. The board has a pin grid array

(PGA) socket, which is used to interface to the floating-gate array IC. The user can

connect the board to the USB port on a desktop computer, and then perform all pro-

gramming and testing operations from a convenient MATLAB interface. The board

can be receive power over the USB connection, so it does not require an additional

power supply. From the 5V supplied by the USB, 12V and 3.3V supplies are derived.

The programming and testing operations involve setting and reading voltages

on the pins of the floating-gate array. These operations are performed by a 40-

channel digital-to-analog converter (DAC) and an 8-channel analog-to-digital con-

verter (ADC), the latter of which is embedded in the AT91SAM7S ARM core micro-

controller on the board. The microcontroller controls the setting of the DAC channels,

the reading of the ADC, and setting and reading of digital input/output (I/O) lines
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Figure 1: Printed circuit board for programming and testing floating-gate array ICs.
The block diagram is shown in a), and a photograph of the board is shown in b), with
a pencil to show the scale.

that interface to the IC. The DAC is powered from the 3.3V supply, so op-amp cir-

cuits on the 12V supply are used to amplify the DAC outputs where high voltages

are needed (for instance, for floating-gate injection and tunneling). In addition, there

are op-amp circuits available for buffering weak signals from the IC. There are also

audio amplifiers and audio jacks for easy interfacing to audio equipment. All of the

functions that the microcontroller performs can be controlled by the user from the

MATLAB environment.

The board is an improvement on a previous design by Scott Koziol, Craig Schlottmann,

and Csaba Petre [41]. In comparison with the previous design, it has significantly re-

duced power supply noise and cross-coupling among signal traces, increased available

voltage ranges, and improved ease of use for applications requiring external voltage

supplies. The improved noise performance of this board, as compared to the previous

design, is shown in Figures 2 and 3.
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Figure 2: Comparison of voltage supplies and DAC output on new PCB versus the
previous version. All of the signals except for the 5V supply are dramatically im-
proved.
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Figure 3: Comparison of output of audio circuit on new PCB versus previous version.
In both measurements, the input to the amplifier is a 30mV sine wave. The substantial
improvement in the performance for the new board is due to the greatly reduced noise
on the 12V supply, which powers the audio amplifiers.
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2.2 Fast and flexible software interface

2.2.1 Communication speed and floating gate programming times

The speed of communication between the personal computer the microcontroller is

important for determining the speed of floating gate programming operations. This

makes communication speed a very important metric for the user of this system. A

significant boost in communication was obtained by switching the communication

protocol from RS-232 to USB. In the first system that was implemented, commands

to set DAC channels and read ADC voltages were sent to the microcontroller and

executed one at a time. Since each command requires only a few bytes of data, and

the typical latency for sending data is 10-70ms, the communication speed in this

framework was severely limited by the latency (at a baud rate of 12 Mbaud, clocking

a few bytes requires only a few microseconds).

The speed of the interface was greatly increased by the implementation of a queue,

whereby the MATLAB interface accumulates many commands before sending them,

thus reducing the penalty incurred from the communication latency. This framework

yielded one other advantage. It provided the user the ability to execute sequences

of commands with timing accuracy on the order of a microsecond, which is orders of

magnitude better than in the non-queuing system. These improvements had a huge

impact on the user’s experience with this system. They reduced the time required to

program an analog floating gate transistor from 5-10 minutes to a few seconds.

2.2.2 Flexible framework to support multiple hardware systems

The endeavor of researching floating-gate transistor array technology and its appli-

cations produced a large variety of hardware systems. My collaborators and I have

found occasion to work with 4 different custom PCB systems and about a dozen dif-

ferent ICs. Many of the ICs have multiple modes of functionality, which can affect the

way that floating gate programming is done on the chips. It is a non-trivial software
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design problem to write code that is compatible for all different combinations of these

sources of hardware system variation. In the absence of a systematic approach to this

problem, there is a tendency for software to proliferate, as each person writes code

that is specific to his/her application. This causes significant duplication of effort, and

perhaps more importantly it reduces interoperability of different researchers’ systems,

raising the barrier for collaboration.

A software framework to address and avoid this situation was created. The concept

of the framework is simple. Code is written for programming floating gates in a way

that does not refer to specific signals on the IC or PCB. Separate files are written

to describe the various ICs and PCBs. The code that programs the floating gates

refers to data structures defined in these files in order to determine which signals need

to be set and read in the course of programming. This approach provides a logical

organization for the various degrees of freedom encountered in the hardware systems,

and allows users to change aspects of their hardware systems with minimal changes

to the software.

2.2.3 Specialized functions for data acquisition

The microcontroller on the PCB has architectural features and embedded peripherals

that allow the creation of arbitrary waveforms and the capture of traces of data, thus

providing a multi-channel arbitrary waveform generator and a rudimentary oscillo-

scope. Software support for these functions, including easy-to-use MATLAB inter-

faces, were created. These functions effectively integrate the instruments that make

up a simple bench-top testing setup into a single small, lightweight, and portable

PCB (described in Section 2.1).

2.3 Approach for floating-gate transistor programming

In order to reap all of the benefits of using analog floating gate transistors described

earlier in Section 1.2, one must have an effective method for programming the charge
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on the floating gates. This is normally done by means of two physical processes for

manipulating the floating-gate charge: channel hot electron injection and Fowler-

Nordheim tunneling. Getting the desired results from these two processes is a non-

trivial task. The use of the hot electron injection process for floating gate program-

ming has been the topic of many studies [6, 29, 61, 62]. However, this previous work

has treated the matter of the floating-gate voltage during injection in an incomplete

way. This observation yields some insights about the characteristics of the hot elec-

tron injection process and the reasoning for choosing parameters to control it.

2.3.1 Modeling hot electron injection

As a quick review, the circuit diagram of the typical floating gate pFET cell is depicted

in Figure 4 (floating gate pFETs are much more commonly used than floating gate

nFETs, for reasons that will be discussed in Chapter 4). If current flows through

the channel of the device and the voltage drop from the channel to the drain is

sufficiently high, impact ionization occurs in the drain region, creating hot electrons

that can have sufficient energy to cross the gate oxide, thus making the net charge on

the floating gate more negative. It is important to note here that this process may

only decrease the floating gate charge, and that in most analog floating gate array

architectures, the only operation for increasing the floating gate charge is a tunneling

operation which is global, i.e. it affects many floating gate devices simultaneously.

The consequence of this is that when many devices are to be targeted for hot electron

injection, “overshooting” on a single one (i.e. injecting too many hot electrons) would

have the undesirable result of needing to perform a tunneling operation and then redo

the injection of all of the devices that were tunneled.

With that review out of the way, the study of hot electron injection begins with a

characterization of the injection current as a function of the terminal voltages of the
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Figure 4: Schematic of floating gate cell. Capacitors drawn with dashed lines repre-
sent parasitic capacitances.

transistor. Physically, the injection current depends on both the channel current and

the voltage drop from the channel to the drain. In a device with the well connected

to the source as in Figure 4, these two quantities are uniquely determined by two

voltage differences: Vsd (the source voltage minus the drain voltage) and Vsg (the

source voltage minus the floating gate voltage). Thus it seems natural to measure

the device characteristics for a range of these two voltage differences. The result is

the family of curves shown in Figure 5. This characteristic completely specifies the

dependence of injection on the terminal voltages.

Note that if the terminal voltages of the device are held fixed and hot electron

injection occurs, the floating gate voltage will decrease, which constitutes rightward

motion along the curve in Figure 5. To the left of the maximum, the slope of the curve

is positive, so as injection proceeds, this rightward motion accelerates the injection

process in a positive feedback loop. To the right of the maximum, the rightward mo-

tion decreases the rate of injection so the floating gate voltage gradually approaches

an asymptote. Interestingly enough, while the previous studies of hot electron injec-

tion have described various aspects of this behavior, none of them have displayed the

injection characteristic as a function of these two quantities (Vsg and Vsd).
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Figure 5: Measured characteristics of hot electron injection for floating-gate pFET. In
this measurement, the drain voltage is always 0 so Vdd=Vsd. The current is normalized
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2.3.2 Reasoning for injection algorithm

Having a clear picture of the device characteristics is a useful start for developing an

approach for using injection to achieve a particular state of floating gate charge. Sev-

eral observations create the context for this problem. Firstly, the floating gate voltage

is not directly observable. It is generally inferred from a measurement of the chan-

nel current of the transistor (in conjunction with a model for the I-V characteristic-

the EKV model [23] was used in this work). Secondly, the supply voltages required

for injection are typically higher than the voltages that the transistors are operated

at, in which case the voltage Vdd is increased in order to perform injection. When

programming accuracy is important, the mismatch in device parameters (parasitic

capacitances and Early voltages) among the floating gate transistors in an array is

large enough that a current measurement made in the elevated Vdd condition pro-

vides an inaccurate estimate of the current that would be measured in the regular

“run mode” condition. For this reason, the injection is performed using an iterative

algorithm, which consists of alternating steps of raising Vdd to perform injection, then

lowering Vdd to measure the channel current and infer Vfg. This iteration continues

until the target value of Vfg is reached, but as mentioned earlier, it must be designed

to minimize the occurrence of “overshooting”.

With this context in mind, the logic in the algorithm boils down to three questions,

which must be answered on each iteration: 1) how much change in Vfg should the

pulse attempt to achieve?, 2) how much time should be used to achieve this change

in Vfg?, and 3) what terminal voltages should be used to achieve the injection current

that corresponds to the desired change in Vfg and pulse time?

The factors to be considered in order to answer these questions are as follows. A

naive answer to question 1 would be that the change in Vfg should be the difference

between the current Vfg and the target Vfg. There are two possible problems with this.

Firstly, this answer leaves zero margin for error. It is highly advantageous to allow
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some room for error, because error tolerance in the algorithm can significantly reduce

the burden of device characterization (for instance, it could allow one to characterize

only a single device on the chip and use its characteristic as an approximation for

the other devices’ characteristics, knowing full well that this introduces some error

due to process variation). Thus, a better choice for the change in Vfg might be some

fraction (e.g. 1/2 or 2/3) of the difference between the current Vfg and the target

Vfg. The second potential problem is that if the desired change in Vfg is large enough

that the injection current will change significantly over the course of the pulse, it will

be difficult to predict the relationship between injection time and the change in Vfg.

For this reason, it is a good idea to limit the target change in Vfg some 200-500mV.

The question about how much time should be used for the pulse seems easy enough

to answer. Speed is a desirable characteristic for the algorithm, so the time should

be as small as possible. This is actually a good answer, with a couple caveats. “As

small as possible” should be such that the system timing the injection pulse has

acceptably low jitter (how much jitter is acceptable depends on how aggressively the

target change in Vfg was chosen and how large the other sources of error are). Also,

there are typically constraints on the allowable terminal voltages for the devices, and

within these constraints there is some global maximum of injection current. Clearly

the time needs to be at least enough to bring about the desired change in Vfg at the

maximum achievable injection current. In summary, the time should be minimized

subject to the constraints on timing accuracy and injection current. Once a time is

selected, this specifies a corresponding injection current.

The question about choosing terminal voltages is where the insight from the device

characterization in Figure 5 pays off. There is a clear advantage to starting the

injection pulse with the floating gate voltage at or near the peak of the injection

characteristic. Since the first order variation in the injection current with floating

gate voltage is zero, this is the point on the curve at which the charge injected during
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the pulse is best approximated as Iinj ∗ Tpulse, the product of the pulse time and the

injection current at the peak of the curve. Furthermore, since the second order term

is negative, this formula will only overestimate the injected charge, so it is guaranteed

to not contribute to a dreaded “overshoot” error. Having established this principle, it

remains only to find the Vsd corresponding to the curve whose maximum is the rate

specified by the second question, and to find the Vsg at which that curve attains its

maximum. This requires a model of peak injection rate versus Vsd and a model of

Vsg at peak injection rate versus Vsd. Both of these models can be extracted from

the characterization data using regression fits to first or second order polynomials

(best results are obtained by fitting to ln(Iinj) rather than Iinj). Once Vsd and Vsg

are specified, there is one extra degree of freedom since there are three terminal

voltages (source, drain and gate) and only two constraints (Vsd and Vsg). This degree

of freedom can be chosen arbitrarily, or in some systems, other considerations may

provide an additional constraint.

As mentioned earlier, the reasonable approach of characterizing only one device

and then applying this characterization to all of the device introduces some error.

There is a nice way to correct for this error in the algorithm. When the floating

gate voltage gets near to the target voltage (say, within 100mV), the rate of injection

is generally not changing very much with repeated iterations (especially if the algo-

rithm has been at all successful in reaching the peak of the injection curve). Thus, at

this point, the injection current may be measured for one pulse, and then the mea-

sured injection current can be used in place of an inaccurate model of the injection

characteristic.

One of the natural questions that arises when one thinks about this system for

a while is “what is the limit on programming resolution/accuracy?”. Clearly the in-

jection current varies in a predictable way with Vsd such that we can easily achieve

extremely low injection currents. It would seem that an injection pulse that injects
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only one or two electrons could be performed easily. A short investigation of this

idea revealed that the accuracy is limited by noise in the floating-gate transistor and

the measurement device. If this noise were additive white noise, its effects could be

eliminated by application of averaging (or equivalently, low-pass filtering). However,

the noise has a “1/f” component due to flicker noise in the transistor, and this noise

process adds enough inaccuracy to a comparison of the channel current before and

after an injection pulse that changes in floating gate charge on the order of an ele-

mentary charge are not possible to observe clearly. The 1/f noise in the device means

that the achievable accuracy of floating-gate programming decreases with the time

elapsed since the device was measured (the error increases logarithmically with time

since programming). Thus, the achievable accuracy of a programmed floating-gate

current is fundamentally limited by the intrinsic device noise, which can be calcu-

lated from standard noise models based upon device dimensions, process parameters,

target current, time available for averaging the measurement, and a specification of

the duration for which the current needs to be valid after programming.

2.4 FPAA circuits measured in this framework

Developing a fast, flexible software framework and an effective algorithm for floating-

gate programming allowed for a demonstration of several interesting circuits on an

FPAA. The following circuits are included here because they illustrate some of the

unique capabilities of analog floating-gate technology, they demonstrate the power of

a reconfigurable platform like this FPAA, and because these measurements are an

example of the type of work that is enabled by all of the “nuts and bolts” presented

in Sections 2.1 through 2.3.

Before characterizing the frequency response of a variety of circuits, the achiev-

able frequency range was briefly investigated. In general, the parasitic resistance and
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Figure 6: Measurement of frequency response of on-chip op amp at various bias
currents. The circuit diagram is shown in a) and the measured results are in b). As the
bias current is increased, the amplifier’s bandwidth increases while the phase margin
decreases. The bias current that corresponds to critical damping (thus avoiding a
resonant peak in the transfer function) is between 100nA and 1uA, and yields a
corner frequency between 1 and 10MHz.

capacitance of the interconnect in an FPAA imposes some constraints on the oper-

ating frequencies of the circuits that are routed using this interconnect. The values

of parasitic resistance and capacitance depend on the details of the routing of the

particular circuit, but the lowest achievable parasitics correspond to a case in which

a single local routing line is driven by an ideal voltage source through a single switch,

shown in Figure 6 with an op amp to buffer the signal off-chip. In this case, char-

acterization data from the FPAA in [9] suggests that the resistance and capacitance

will be approximately 10kOhm and 200fF, respectively. This creates a simple first

order system with a pole at about 80MHz.

Measurements made on this circuit in the 100Hz-30MHz range, shown in Figure

6, indicate that the on-chip op amp used to buffer the signal is limited to a lower

range than 80MHz. The response of the circuit is shown for several values of the
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unit bias current that is used to bias the op amp. As the bias current increases,

the bandwidth increases, but the phase margin decreases, eventually resulting in

an underdamped frequency response. The bias current that corresponds to critical

damping (thus avoiding a resonant peak in the transfer function) is between 100nA

and 1uA, and yields a corner frequency between 1 and 10MHz. Of course, the stability

of this amplifier is limited by its large load capacitance (PCB traces and oscilloscope

probe/input). This load capacitance could perhaps be decreased by optimized PCB

design and a buffer amplifier to isolate the oscilloscope capacitance from the op amp

on the IC. In any case, this measured result gives no reason to doubt that the parasitic

pole introduced by the routing is at the theoretically predicted frequency of 80MHz.

In addition to constraints imposed by the on-chip op amp, the testing frequency in

this experiment was limited by the range of the available function generator (30MHz).

Furthermore, the wavelength of electromagnetic waves at 20MHz in a coaxial cable is

approximately 10m, so the available cables, which are on the order of 1m in length, are

long enough that transmission line effects start to become important at this frequency

and above. This means that some additional techniques for matching impedances

must be used for effective testing in this frequency range.

One attractive feature of subthreshold CMOS circuits is the availability of many

orders of magnitude of current with a fixed device size. Using analog floating gate

transistors allows for programming of currents in this wide range in a simple and

compact fashion. This principle is illustrated by using a floating-gate pFET as the

bias current source for a standard wide-swing operational transconductance amplifier

(OTA). When the OTA is connected in a follower topology, shown in Figure 7, the

frequency response is a first order low pass filter, with the corner frequency being

proportional to the transconductance (which in subthreshold operation is proportional

to the bias current). Measured results from this circuit are shown over 7 orders

of magnitude of bias current in Figure 7. This illustrates how a filter with corner
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frequency that varies over 6 orders of magnitude can be implemented with a simple

circuit. Figure 7 also shows a variation of this circuit, wherein the OTA has floating

gate inputs. The input is coupled through a capacitive divider, the attenuation of

which is approximately 10x. This increases the linearity of the OTA, while decreasing

the transconductance.

The floating gate inputs on the OTA in Figure 8 provide another very useful

feature. By changing the floating gate charge on the inputs, a common-mode and

differential offset may be added to the inputs. A common-mode offset is often useful

for keeping input signals within the input common mode range of the OTA, while

a differential offset allows the implementation of a programmable level shifter. DC

sweeps of this level shifter, programmed to a variety of differential offsets, result in

the family of curves shown in Figure 8. One interesting application of this circuit

can be observed by considering the behavior when Vin is 0. In that case (with Vin

grounded), this circuit is a rail to rail programmable, supply-independent bias voltage

generator.

Like the low-pass filter shown earlier, the high-pass filter topology shown in Figure

9 is tunable over many orders of magnitude in frequency, a feature that results from

subthreshold operation and floating-gate programmability.

Many signal processing algorithms require spectral decomposition of the inputs.

One classic example of this from the field of neurobiology is the spectral decompo-

sition performed by the cochlea at the first stage of auditory processing. A similar
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Figure 7: First order low pass filters measurements. The performance of the floating-
gate OTA based low pass filter is shown in a), while that of the conventional OTA
based low pass filter is shown in b). Schematics of both circuits are shown in c). The
capacitive attenuator in the floating-gate OTA yields an attenuation of about 10x,
which reduces the transconductance, and therefore the low pass corner frequency. The
fact that the corner frequency of a single circuit can be programmed over a range of 6
orders of magnitude illustrates the flexibility derived from using subthreshold circuit
design techniques and floating gate transistor technology.
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Figure 9: High pass filter circuit and measurement results. Programming the float-
ing gate biases for the OTAs over many decades of current yields a large range of
tunability for the filter characteristics. Measured performance is shown in a) and the
circuit topology is shown in b). The capacitive divider provides an attenuation factor
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Figure 10: Resonator topology for high-Q bandpass filter that can be used for spectral
decomposition. Measured performance is shown in a) and circuit topology is shown
in b). The capacitive dividers provide an attenuation factor of approximately 10x to
each OTA.

functionality can be achieved by a bank of sharply tuned filters. High-Q resonant

filters such as those depicted in Figures 10 and 11 can be used to create such a filter

bank. In both of these circuits, the quality factor Q of the circuit is limited by the

open-loop gain of the amplifiers.

These use of floating-gate transistors allows for circuit techniques that employ

capacitive summing, yet do not have high-pass characteristics (i.e. the capacitive

summation works even at low frequencies). One interesting example of a circuit that

nicely takes advantage of this feature is shown in Figure 12. It is a common source

amplifier with capacitive feedback, resulting in a unity gain inverting amplifier. The

conventional circuit design approach for obtaining a unity gain inverting amplifier

an op-amp with resistive feedback. The relatively large current that flows through

the resistive network places constraints on the amplifier design, resulting in op-amp
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Figure 11: Capacitively coupled current conveyor (C4) topology for high-Q bandpass
filter that can be used for spectral decomposition. Measured performance is shown in
a) and circuit topology is shown in b). The capacitive dividers provide an attenuation
factor of approximately 10x to each OTA.

circuits that use power and silicon area inefficiently. By contrast, the circuit in Figure

12 accomplishes this purpose using only two transistors and a low bias current.

Another illustration of the power of capacitive summation is shown in Figure 13,

which depicts a voltage mode summing circuit. Here the same considerations apply

when comparing the efficiency of this circuit (with regard to silicon area and power)

to that of the conventional “op-amp and resistive network” approach. Figure 13 also

depicts a version of this voltage mode summing circuit with capacitive attenuation

to impart a scaling factor to the summed result.

The inverting amplifier shown in Figure 12 can be combined with a differential

pair to create a full-wave rectifier circuit, shown in Figure 14. The intuition behind

this circuit is based on the fact that the common node in the differential pair is

determined by the maximum of the two inputs. Thus, a differential pair that receives
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Figure 12: Unity-gain inverting amplifier implemented with a floating gate and ca-
pacitive feedback. Measured performance for several bias voltages is shown in a), and
the circuit topology is shown in b).

a signal and the inverted signal can be used for full wave rectification. This kind of

operation can be useful for envelope detection and audio feature extraction.
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Figure 13: Voltage-mode summing circuits that take advantage of capacitive summa-
tion at a floating node. In a) and b), the response of the circuit to consecutive triangle
waves on the two inputs is shown. The measured output is plotted with open circles
and a linear combination of the two inputs is plotted as a solid line. The coefficients
in the linear combination are nearly equal, but not exactly (due to mismatch between
the two input capacitors). In c), the circuit diagrams are shown for two different
version of the summing circuit (one with a 6x capacitive attenuation and one without
any attenuation).
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Figure 14: Full-wave rectifier circuit. The response of the circuit to a sinusoidal input
is shown in a), and the circuit topology is shown in b).
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Chapter III

NEW DEVICE CHARACTERISTICS: BI-DIRECTIONAL

TUNNELING

3.1 Floating-gate array programming and bidirectional tunnel-
ing

As described in Chapter 1, floating-gate transistor arrays enable a variety of useful cir-

cuits. A few examples include a radial basis function classifier [49], field programmable

analog arrays (FPAAs) for signal processing applications [30, 7], and more special-

ized FPAAs for sensor interfacing [50] and computation using multi-input translinear

elements [59].

In all of the above-mentioned systems, many floating-gate transistors in an array

are tunneled simultaneously as a global erase operation (Fowler-Nordheim tunneling),

then individual floating-gate transistors are programmed via hot electron injection.

In Chapter 2, the characteristics of injection for hot electron injection were presented

and analyzed. One important feature of the characteristics is that for subthreshold

currents, the rate of injection is roughly proportional to the channel current. A con-

sequence of this fact is that if a device is tunneled too much, the rate of injection

drops so low that the injection phase of programming either fails or requires unac-

ceptably long times to complete. In the past, such a situation has been remedied by

the application of ultraviolet light or very long hot electron injection exposure times.

This chapter describes a better option for addressing this issue, namely the use of

bidirectional tunneling. In bidirectional tunneling, electrons are first removed from

the floating gates in an erase operation that we will call “forward tunneling”. Then,

the polarity of the field applied to the tunneling junction is reversed, and electrons
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are added to the floating gates in a global recover operation that we call “reverse

tunneling”. With proper selection of fields and exposure times, this sequence of op-

erations can ensure that the injection phase of the programming cycle is successful.

Figure 15 illustrates how bidirectional tunneling fits into the scheme of floating-gate

programming . One interesting feature of reverse tunneling is that the terminal volt-

ages required are much lower than for forward tunneling. This can be clearly seen by

comparing the measured I-V characteristics of a single tunneling junction for forward

and reverse tunneling, shown in Figure 15.

An extremely beneficial result of bidirectional tunneling is that it introduces a

steady-state equilibrium floating gate voltage that can be controlled by the balance

of tunneling and reverse tunneling parameters. By contrast, in an array that is

programmed using only forward tunneling and hot electron injection, any devices

that are not injected will simply be repeatedly tunneled, which drives them toward

an equilibrium floating gate voltage that is far above the limit for reliable injection.

As a result, it is simply a matter of time before such a system will encounter problems

with injecting floating-gate devices that have not been injected for many programming

cycles. This crucial difference between unidirectional and bidirectional tunneling

approaches is illustrated in Figure 16.

In order to understand the bidirectional tunneling processes and gain insight into

how to choose parameters for forward and reverse tunneling, it is helpful to make

a quantitative model based on the basic theory of the tunneling processes, fitted to

characterization data from a real floating-gate transistor array. The remainder of this

chapter describes the results from implementing such a model, based on measured

data from an FPAA designed for analog signal processing applications (described in

detail in [9]), and also illustrates the use of the model to address the question of

choosing optimal bidirectional tunneling parameters.

37



www.manaraa.com

...

... C
A

B

c
o

m
p

o
n

e
n

ts
(a)

tunneling

ultraviolet (UV) 

exposure

targeted injection

Floating-Gate Transistor 

Programming Cycle

“erase” “program phase”}
“recover”

injection for hours 

or days

reverse tunneling

(b)

n+ n+
n

n+p+p+
n

poly

poly2

p

V
A

I
TUN

V
A

I
TUN

Forward Tunneling 12V Electrons off of gate

Reverse Tunneling -6V Electrons onto gate

(c)

5 6 7 8 9 10 11
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

I tu
n (

fA
)

|V
tun

−V
fg

| (V)

"reverse tunneling"

"forward tunneling"

(d)

Figure 15: Context and motivation for the study of tunneling with floating-gate tran-
sistor arrays. a) Structure of field-programmable analog arrays (FPAAs) wherein this
work is applied. Such chips contain hundreds of thousands of floating-gate transistors,
the charge of which is manipulated by global tunneling operations. b) Description of
a single cycle of programming for the floating gates in such arrays. c) Cross-section
view of floating-gate transistor with tunneling junction and gate coupling capacitor.
Some example terminal conditions for forward and reverse tunneling are shown. d)
Measured I-V relationship of the tunneling junction for both directions of tunnel-
ing. Reverse tunneling clearly requires much lower applied voltages to obtain similar
currents.
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Figure 16: Depiction of floating-gate voltages throughout the various phases of a
programming cycle. The forward tunnel operation turns off all devices, but raises
the voltage on some devices too far, making them impossible to inject reliably. The
reverse tunnel operation then lowers the voltages back into the range wherein targeted
injection can be done successfully. The trajectories of tunneling for infinite time
illustrate what happens to un-injected devices in a floating-gate array that does not
use bidirectional tunneling.

3.2 Modeling floating-gate voltage and electron tunneling

The schematic of a floating-gate array element, which was shown in Chapter 2, is

included again here in Figure 17 for convenience. The associated capacitors, including

the parasitic capacitances, are shown. The charge stored on the floating gate, in

concert with the terminal voltages, determines the floating-gate voltage Vfg. Using a

linear model for all of the capacitors, this relationship takes the form:

Vfg = (Qfg +
∑

ViCi)/Ctotal (1)

Where the summation index i runs over all of the capacitors that couple to the

floating gate, Qfg denotes the net charge on the floating gate, and Ctotal is given

by
∑
Ci. In many circuits, the floating-gate charge Qfg is left unchanged while the

circuit is active (the circuit is somehow disabled to allow for programming of Qfg),

so the capacitor Cgate provides a means of manipulating Vfg while Qfg remains fixed.
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Figure 17: Details of the core floating-gate element. a) Schematic of floating-gate
element. Parasitic capacitances are denoted with dashed lines. b)

Qfg may be changed by way of tunneling through one of the oxides (in principle

this could be any oxide, but tunneling happens much more readily through the gate

oxides, which rules out tunneling through Cgate for most realistic terminal voltages).

The tunneling capacitor is designed to minimize the coupling Ctun, which in turn

maximizes the voltage across this device subject to the constraint Vtun<Vtun,max,

where Vtun,max is the maximum available voltage for tunneling. The transistors M1

and M2 are matched. One of them is only used for manipulating Qfg by way of

hot electron injection, and the other is used as a circuit element. The motivation

for this two-transistor design of the floating-gate element is described in [28]. The

floating-gate element can also be designed with a single transistor approach, and the

principles described in this article apply equally well to such devices.

If one cannot assume that the capacitors are linear, Vfg is determined by:

dVfg = (dQfg +
∑

dViCi)/Ctotal (2)

together with the boundary condition that Vfg=0 when Qfg and all Vi are 0. In

this case, Ci and Ctotal are not constants. Often Ci is described as a function of

Vi-Vfg. Thus, Ci and Ctotal are implicitly functions of Qfg and all the voltages Vi.
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LC device HC device
W (um) 6 15.1
L (um) 2 0.6

Cgate, nominal (fF) 44 119
Cox, nominal (fF) 118 89
Cox, measured (fF) 130 98

Table 1: Device parameters for two example devices characterized in this study. The
capacitive coupling ratios for terminals of devices that share global terminal voltages
for tunneling operations results in different floating gate voltages and therefore dif-
ferent tunneling rates for the different devices. Accounting for this effect is essential
for achieving desired behavior from tunneling operations. The abbreviation “HC” (for
high coupling) is used for the device whose gate capacitor is large, whereas “LC” is
used for the other device.

This capacitor nonlinearity complicates the model significantly, so linear capacitors

is a very useful approximation for cases in which the resulting error is tolerable.

For the purpose of the present study, it was found that in order to predict the

outcome of tunneling operations with a reasonable accuracy (Vfg errors of tens of

mV), only the largest capacitor nonlinearity, namely that of CV dd, must be modeled.

While the small capacitances Cd, Ctun, and Cgnd are all nonlinear, it was found that

a linear model of them yielded satisfactory results. Not surprisingly, a linear model

is a good description of the poly-poly capacitor Cgate.

Several aspects of the system for floating-gate transistor programming are impor-

tant for understanding the metrics of performance for tunneling. When floating-gate

transistors are used as analog programmable parameters, a large range of achievable

floating-gate voltages is usually desirable. The lower end of the programmable range

is determined by limitations on the hot electron injection process, while the upper

end is governed by the tunneling process. Thus, the achievable range is maximized

by tunneling as much charge as possible onto the floating gate. However, too high a

Vfg can cause injection to take arbitrarily long or to fail, depending on the control

algorithm for injection. This limitation can result from the mechanics of the hot

electron injection process itself, or it can be a consequence of constraints imposed by
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the method of measuring the floating gate voltage.

Thus, the erase/recover operation must strike a compromise between Vfg dynamic

range and hot electron injection time/reliability. For architectures in which tunneling

is a global operation, a single choice of parameters must simultaneously strike this

compromise for a large set of devices. This would not be an added challenge if

all of the devices responded to a tunneling exposure in identical fashion. However,

in practice, the various devices’ responses can significantly differ from one another

for two basic reasons. The first reason is that the capacitors coupling the global

terminals to the floating gate voltage vary in size (this is generally the result of

different devices having different nominal sizes for M1, M1, and Cgate due to circuit

design considerations). This causes the floating gate voltages to change differently

in response to changes of the global terminal voltages that occur before and after

tunneling exposures. The second reason is that the I-V characteristic of tunneling

junctions on nominally identical floating-gate devices differ significantly due to process

variation. Both of these sources of mismatch in tunneling behavior are significant.

In order to illustrate the approach for handling the first source of mismatch (i.e.

systematic differences in capacitors coupling to Vfg), the next two sections (Sections

3.3 and 3.4) present results for two floating gate elements that have different nominal

parameter values for M1, M2 and Cgate, yet share a global tunneling voltage. Table 1

shows the nominal parameters for the two devices, which significantly differ in their

ratios of Cgate/Cox, where Cox is the lumped oxide capacitance of the gates of M1 and

M2, which can be estimated as the value of CV dd under conditions of accumulation

or inversion. Throughout this chapter, the shorthand HC (for high coupling) is used

to refer to the device with the larger ratio Cgate/Cox, while LC (low coupling) is used

for the other device.

Some results pertaining to the second source of mismatch (process variation in

tunneling characteristics of nominally identical devices) are presented in Section 3.6.
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Figure 18: Band diagrams depicting the tunneling processes. a) Reverse and b)
forward Fowler-Nordheim tunneling band diagrams for a an n-well varactor with a
degenerately p-doped gate.

Table 2: Ranges of terminal voltages used for tunneling

forward tunneling reverse tunneling run mode
Vgate 0 Vrev1(0-6V) 0
Vd 0 Vrev2(4.5V-6V) 0-2.4V
Vdd 0 Vrev2(4.5V-6V) 2.4V
Vtun 9V-14V 0 0

Tunneling is the quantum mechanical phenomenon whereby an electron may pass

through an electrostatic potential barrier without having sufficient energy to propa-

gate over the barrier. It is a fundamental result from quantum mechanics that the

probability of an electron tunneling through a barrier decreases exponentially with

the barrier’s width. If the barrier under consideration is an insulator separating two

conductors, applying a voltage two the two terminals creates a field in the insulator,

which can reduce the barrier width, as shown in Figure 18. This process may be mod-

eled analytically by the use of the WKB approximation [27]. This results in what is

called a Fowler-Nordheim type expression for the tunneling current:
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Itun = CFNE
2exp(−4

3

(qφ)1.5
√

2mox

Eq~
) (3)

where Itun is the tunneling current, CFN is a scaling factor, E is the field in the

insulator, mox is the electron effective mass in the insulator, q is the elementary

charge, ~ is the reduced Planck constant, and φ is the barrier height. Thus, in

practice, tunneling can be done on floating-gate transistors by establishing a high

voltage across a gate oxide. Figure 18 qualitatively depicts the band diagrams through

the tunneling junction for forward and reverse tunneling, under the assumption that

the polysilicon gate is degenerately doped p-type. As discussed further in Section 3.3,

the differences in these pictures could partially account for the dramatic difference in

I-V characteristics for forward and reverse tunneling.

The terminal voltages applied to the floating-gate transistors in order to achieve

forward tunneling and reverse tunneling are shown in Table 2. This table also shows

the terminal voltages for the devices in “run mode”, i.e. after the floating-gate pro-

gramming operations are completed, which is significant for this discussion because

this constitutes a reference set of terminal conditions that is used when calculating

numbers for Vfg. For forward tunneling, all of the terminals are set to ground except

for Vtun, which sets up a maximal voltage across the capacitor Ctun. For reverse tun-

neling, all of the terminals are set to a high potential, while Vtun is set to ground,

which again maximizes the voltage across Ctun (this time in the opposite polarity).

The user-specifiable parameters of these tunneling operations are Vtun during forward

tunneling, Vdd and Vgate during reverse tunneling, and the exposure times for forward

and reverse tunneling. Section 3.4 presents an approach for choosing these parameters

in a way that allows one to achieve the desired balance between floating-gate voltage

dynamic range and hot electron injection reliability/time while minimizing tunneling

time. The motivation for allowing Vgate to differ from Vdd during reverse tunneling is

also described in that section.
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3.3 Measured tunneling characteristics

The dependence of the tunneling current on the voltage across the tunneling capacitor

was measured for forward and reverse tunneling, for both the high and low coupling

devices. The measurements were taken by leaving Vtun fixed and varying Vfg, mea-

suring the tunneling current for each different Vfg. In order to get the measurement

right, one must have a means of accurately inferring Vfg across a wide dynamic range

(including voltages for which no measurable current will flow in the transistor), and

one must also ensure that Vfg does not change by an appreciable amount during a

single tunneling pulse. The inference of Vfg requires characterization of all of the

capacitances that couple to the floating gate, including the nonlinear CV dd. An el-

egant experiment that simultaneously characterizes CV dd and the tunneling current

was devised, and it is described in detail in Section 3.5.

The results of the measurement are shown in Figure 19, which depicts the data

in a type of plot known as a Fowler-Nordheim plot. In a Fowler-Nordheim plot, the

quantity ln( I
E2 ) is plotted versus 1

E
. Examining (3) reveals that such a plot should

yield a straight line. Note that for forward tunneling, the experiment was repeated

at two different fixed levels of Vtun (12.5V and 14V). Several aspects of these results

require further discussion. Note in (3) that the slope of the Fowler-Nordheim plot is a

function of the barrier height and fundamental physical constants, allowing the barrier

height to be extracted from the measured data. Performing this calculation yields

5.54eV for the barrier height for forward tunneling and 3.19eV for the barrier height

for reverse tunneling. The latter is consistent with the numbers typically reported for

experimentally determined silicon-SiO2 junction barrier height[18].

As shown in Figure 18, assuming that the gate polysilicon is degenerately p-doped

could result in an increase in barrier height for forward tunneling that is approximately
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Figure 19: Measured Fowler-Nordheim plots of forward and reverse tunneling char-
acteristics. a) Setup for characterizing tunneling. Iteration with the control loop
allows the tunneled charge to be calculated as Cgate∆VDAC . b) Forward tunneling
characteristics for high coupling (HC) and low coupling (LC) devices, characterized
with two different fixed tunneling voltages V tun. b)Reverse tunneling characteristics
high coupling (HC) and low coupling (LC) devices.
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Figure 20: Tunneling characterization with direct control of Vfg. a) Test circuit used
for measurements. b) Measured Fowler-Nordheim plots of the characteristic for 3
different voltages Vtun. c) Example waveform measured at Vout in the circuit shown
in (a).

equal to the band gap of Si. Even taking this into account, the resulting barrier height

of 4.3eV is significantly lower than the value extracted for forward tunneling in these

devices. The cause of this discrepancy is not known at this time. Of course, the fits

of the measured data are in terms of the field in the insulator, which was calculated

using the nominal gate oxide thickness for the process, 7nm. So the disparity between

forward and reverse tunneling characteristics could also be interpreted as a change of

barrier thickness with the same barrier height. For instance, if the effective insulator

thickness for forward tunneling is 16nm, this is consistent with a barrier height of

3.2eV for the measured data.
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A second interesting feature of the measured characteristics is the dependence

on the voltage Vtun. Since Vtun is taken into account to compute the value on the

x-axis, if the device obeys the characteristic in (3), the curves for different voltages

Vtun should lie on the same line. However, the curves corresponding to different Vtun

levels for the HC device are clearly different. This difference is unexpected, and at

this time I have no physical explanation for this effect. To my knowledge, this effect

has never been reported elsewhere.

Because this result is fairly surprising, and the experimental method involved

a somewhat complicated inference of the floating-gate voltage, a separate means of

verification of this phenomenon was investigated. Measurements were made on a

floating-gate transistor that is specifically instrumented for such characterization.

This circuit, which is on a different chip in the same process as the FPAA device

that was characterized, is shown in Figure 20a. The circuit allows one to fix the

floating-gate voltage using an amplifier in feedback, and thereby eliminates the need

for inference of Vfg. When Vtun is set to a high enough voltage to cause tunneling

through Ctun, the feedback loop regulates Vout such that the displacement current

through Cint exactly cancels the tunneling current, so Vfg remains fixed. Thus, we

have Itun = Cint
dVout
dt

. If Vtun is fixed, then Itun is fixed, so the amplifier output slews

linearly and its slope gives a measurement of Itun. Using this more direct form of mea-

surement, the characterization of Vtun versus the voltage across Ctun was performed

for several fixed values of Vtun. Figure 20 shows the resulting characteristic, as well

as an example of the measured waveform Vout. The data confirms the dependence of

the tunneling current on Vtun.

Even without having a physical explanation for the dependence of the forward

tunneling current on Vtun, it is relatively straightforward to take this effect into ac-

count when modeling the devices’ behaviors during tunneling. The simple model that
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Figure 21: Measured and simulated trajectories of floating-gate voltages during a
5-second tunneling pulse followed by a 5-second reverse tunneling pulse. a) Floating-
gate voltage trajectory a) for low coupling (LC) device and b) for high coupling (HC)
device.

is used to simulate tunneling is as follows. Linear fits are made to the measured data

for forward and reverse tunneling (the data shown in Figure 19). A separate fit is used

for each of the two values of Vtun that were used in the characterization measurement.

For forward tunneling at a given voltage Vtun’, the two coefficients in the linear fit

are linearly interpolated or extrapolated from the fits at the measured values of Vtun

(namely, 12.5V and 14V). Then, having a simple model for Itun as a function of the

voltage across Ctun, this tunneling current Itun can be related to dVfg
dt

using (2). When

all of the terminal voltages Vi are fixed, (2) reduces to CtotaldVfg = dQfg, from which

one can conclude that Ctotal
dVfg
dt

= Itun.

This equation was integrated in time using Euler integration in MATLAB R©. In

order to take into account the effect of the terminal voltages used during tunneling,

(2) is used, together with measured estimates of all of the capacitances that couple

to the floating gate (see Section 3.5 for a detailed description of the measurement of

the capacitances).
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Using the numerical model described above, the effect of tunneling pulses with a

variety of terminal voltages, initial floating-gate voltages, and durations can be simu-

lated. The simulated results can be compared with measured data. In Figure 21, the

trajectories of the floating-gate voltages for both device types are shown as the devices

undergo a 5-second forward tunneling pulse followed by a 5-second reverse tunneling

pulse. The experimental data are measured by alternately performing short tunneling

pulses and then making measurements to infer Vfg. The accuracy of the model pre-

dictions is representative of the accuracy across the full range of initial conditions and

terminal voltages that are used in practice. The error in the model is the combined

effect of the approximate description of the dependence of tunneling current on Vtun,

the approximation that only CV dd is nonlinear, and errors in the measurement for

characterization of the capacitive couplings and the tunneling currents.

3.4 Choosing bidirectional tunneling parameters

In Section 3.1, the advantage of using tunneling and reverse tunneling in concert was

described qualitatively. This point can be illustrated in a concrete way by measuring

and modeling the behavior of floating gate devices over many programming cycles.

Figure 22 compares the floating-gate voltages of two HC devices over 200 program-

ming cycles. One of the HC devices is injected to a low Vfg (approximately -0.5V)

during each programming cycle, and the other starts at the same low Vfg, but is

never injected during this period of interest. This illustrates a realistic situation for

floating-gate arrays in which some floating-gate devices are not targeted by injection

for many consecutive programming cycles.

If the reverse tunneling step is not used in each programming cycle (as in Figure

22a), the un-injected device’s Vfg is seen to steadily increase with each programming

cycle. Thus is it only a matter of time before the device becomes un-injectable. In

contrast, if both forward and reverse tunneling are performed in each programming
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Figure 22: Measured and simulated Vfg over many programming cycles comparing
bidirectional tunneling to forward tunneling only. The floating gate voltage just prior
to the targeted injection phase of programming is measured in each cycle. Modeled
trajectories are shown as solid lines and measured trajectories are shown as crosses
and open circles. a) Multi-programming cycle behavior when only forward tunnel-
ing is used in the programming cycle. b) Multi-programming cycle behavior when
bidirectional tunneling is used.

cycle (as in Figure 22b), the un-injected device’s Vfg settles to a steady-state value

that is not much higher than that of the injected device. This behavior is greatly

preferable, since one can be confident in targeted injection for any device in the array,

regardless of how many programming cycles it has been since it was last injected.

The natural question that arises at this point is how to determine tunneling pa-

rameters, i.e. terminal voltages and exposure times for forward and reverse tunneling,

given system constraints. In order to frame the question properly, one may first ob-

serve that each set of tunneling parameters specifies an equilibrium Vfg. In order

to understand this, first consider that the change in Vfg that results from a forward

tunneling pulse monotonically decreases as the initial Vfg increases. Similarly the

change that results from a reverse tunneling pulse monotonically increases as the ini-

tial Vfg increases. Thus, for any set of tunneling parameters, there is some initial Vfg

such that the change due to the forward tunneling pulse is equal and opposite the
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change due to the reverse tunneling pulse. This is the equilibrium voltage specified

by the particular choice of tunneling parameters, and it also is the highest Vfg that

will be present in the array at the beginning of any injection operation. Similarly,

the lowest Vfg in the array with be that resulting from a device that is injected to

the lowest attainable Vfg, then erased and recovered once. Note that this maximum

and minimum Vfg correspond to the limiting behavior observed in the two different

devices in Figure 22b.

Thus, for a given type of device, the problem of choosing parameters becomes a

constrained optimization. There is an acceptable minimum and maximum Vfg, which

will be referred to as Vfg,min_allowable and Vfg,max_allowable, respectively. Vfg,min_allowable

is dictated by desired dynamic range of floating-gate programmable parameters, while

Vfg,max_allowable is determined by the requirements for hot electron injection reliability

and time. There are maximum and minimum voltages on all terminals (dictated

by device ratings and/or by available voltage supplies). The tunneling parameters,

together with the device characteristics (capacitive couplings and Fowler-Nordheim

plots for forward and reverse tunneling), determine a minimum and maximum Vfg,

which will be referred to as Vfg,min and Vfg,max, respectively. The problem is to find

a set of tunneling parameters such that all terminal voltages stay in allowable ranges,

Vfg,min≥Vfg,min_allowable, and Vfg,max≤Vfg,max_allowable, and the time required for the

combined erase/recover operation is minimized. When multiple devices with different

characteristics must be tunneled simultaneously, then each different device type will

impose two constraints, Vfg,min,i≥ Vfg,min_allowable,i and Vfg,max,i≤ Vfg,max_allowable,i.

The models presented in this chapter can be used to find Vfg,min and Vfg,max as a

function of tunneling parameters and device characteristics, and thus can be combined

with any numerical algorithm for constrained optimization in order to find optimal

tunneling parameters. However, some intuition can be brought to bear in order to

obtain good parameter choices without going through the trouble of performing the
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numerical optimization. Because tunneling is exponentially faster at higher fields,

and the goal is to minimize tunneling time, a reasonable starting guess would be to

pick the voltages that maximize the field (i.e. the highest Vtun for forward tunneling

and the highest Vdd and Vgate for reverse tunneling). This reduces the dimensionality

of the parameter space to 2 (exposure times for forward and reverse tunneling), which

is a fairly tractable problem for a simple “guess and check” approach.

This method was tested to find tunneling parameters for the HC and LC de-

vices characterized in this study, for 3 different sets of system constraints. For all 3

cases, the minimum terminal voltage was ground, the maximum for Vdd, Vgate, and

Vd was 6V (sufficiently low to reliably avoid any junction breakdowns from occur-

ring), Vfg,min_allowable was 2.4V (this corresponds to rail-to-rail programmability of

the Vfg’s). In case 1, the maximum Vtun was 14V, and the Vfg,max_allowable voltages

were set as the maximum voltage such that the FET will produce a clearly measurable

current (20nA) when Vdd=6V and Vgate=0V. For case 2, the voltages Vfg,max_allowable

were set assuming Vdd=4V instead of Vdd=6V. This is a real constraint encountered

for the FPAA in [9] when a particular circuit is used to measure the drain current of

the floating-gate transistors. For case 3, the maximum Vtun was 12V, which is also

a real constraint for some of the hardware environments in which these FPAAs are

used.

For each of the above 3 cases, some locally optimal tunneling parameters were

found. The constraints, resulting parameters, and predicted Vfg’s are shown in Table

3. Not surprisingly, the least constrained case (case 1) resulted in the fastest combined

erase/recover time, 43ms. There is an important difference between case 1 and case

2, which provides a useful intuition for both floating-gate array design and selection

of tunneling parameters. In case 1, Vgate=Vdd=6V during reverse tunneling, which

maximized the voltage across Ctun, thus maximizing the reverse tunneling current

and minimizing the time spent in reverse tunneling. After the reverse tunneling pulse
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Table 3: Optimal choice of tunneling parameters for 3 different realistic sets of con-
straints

(a) For this case, minimum and maximum allowable post-tunnel
Vfg for the LC device are 2.4V and 3.24V. Minimum and maximum
allowable post-tunnel Vfg’s for the HC device are 2.4V and 4.06V.

model prediction experimental result
Vtun 14V 14V
Vrev1 6V 6V
Vrev2 6V 6V

ttun,forward 30ms 37ms
ttun,reverse 8ms 6ms
LC min Vfg 2.85V 2.88V
LC max Vfg 3.21V 3.16V
HC min Vfg 2.4V 2.42V
HC max Vfg 2.67V 2.62V

(b) For this case, minimum and maximum allowable post-tunnel
Vfg’s for the LC device are 2.4V and 2.7V. Minimum and maximum
allowable post-tunnel Vfg’s for the HC device are 2.4V and 2.95V.

model prediction experimental result
Vtun 14V 14V
Vrev1 3.6V 3.6V
Vrev2 6V 6V

ttun,forward 30ms 32ms
ttun,reverse 1.1s 1.1s
LC min Vfg 2.59V 2.57V
LC max Vfg 2.68V 2.63V
HC min Vfg 2.43V 2.41V
HC max Vfg 2.63V 2.64V

(c) For this case, minimum and maximum allowable post-tunnel Vfg’s
are the same as in (b), but the maximum available Vtun is reduced to
12V.

model prediction experimental result
Vtun 12V 12V
Vrev1 3.6V 3.6V
Vrev2 6V 6V

ttun,forward 2.5s 3.2s
ttun,reverse 0.8s 0.8s
LC min Vfg 2.44V 2.42V
LC max Vfg 2.67V 2.62V
HC min Vfg 2.43V 2.5V
HC max Vfg 2.64V 2.6V
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is finished, the floating-gate voltages of the HC and LC devices are approximately

equal, but after the terminal voltages are returned to their “run mode” condition, Vfg

for the HC device is much lower than that of the LC device (due to their different

coupling strengths). This leads to a significant difference in the pre-injection Vfg for

the two devices, which is not a problem because the constraints in case 1 are relatively

loose.

In case 2, the constraints are much tighter, and the disparity after erase and

recover between Vfg’s of the two devices that would result from using Vgate=Vdd is

unacceptably high. By setting Vgate to 3.6V, the rate of reverse tunneling is decreased

significantly and so the reverse tunneling time is considerably longer, bringing the

total erase/recover time to about 1.1s. However, the change from the reverse tunneling

terminal voltages to the “run mode” terminal voltages does not introduce any extra

difference between the two devices’ Vfg’s. This allows the much tighter constraint

on the Vfg’s to be met. In general, when two devices with significantly different

capacitive couplings their respective Vfg’s share a tunneling line, it will be necessary

to use this technique to meet very tight constraints on maximum and minimum Vfg,

which will result in an increase in the time required for erase/recover operations.

In case 3, the bounds on allowable Vfg are kept the same as in case 2, but the max-

imum tunneling voltage is reduced. This does not introduce a qualitatively different

effect. It simply results in a longer time required for the erase/recover operations.

For all 3 cases, the parameters predicted by the model were verified by experimen-

tal measurements. In order to satisfy the constraints of Vfg’s, the tunneling exposure

times needed to be adjusted slightly from the predictions of the model. Comparison

of the two columns in Table 3 shows that the agreement is quite good, and that the

model is indeed a good basis for determining optimal tunneling parameters.
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3.5 Characterization method

Measuring the tunneling characteristics of a floating-gate transistor requires knowl-

edge of the floating-gate voltage Vfg. This information can be inferred from a drain

current measurement on the basis of a model of the I-V characteristics of the FET.

However, this approach has limitations in dynamic range. Specifically, when Vfg is

sufficiently high, it is often impossible to make a meaningful measurement of the

drain current. Furthermore, for an array such as the FPAA used in this study, the

drain current that is measured when Vfg is very low is limited by parasitic series

resistances that are poorly characterized. The range over which Vfg may be inferred

from a current measurement is extended substantially by making use of models of

the capacitive couplings to Vfg, as in (2). Of the capacitors shown in Figure 17, only

CV dd was modeled as a nonlinear capacitor. Its capacitance was modeled as a function

of Vfg-Vdd, and this function was measured experimentally in the same experiment

wherein the tunneling current was measured (as described below).

The linear capacitances were characterized in terms of the gate coupling capacitor

Cgate by using (2) in the case of fixed Qfg:

dVfg =
∑

dViCi/Ctotal (4)

By making a small change dVi to a terminal voltage Vi, then sweeping Vgate until

drain current is unchanged, we can conclude that dVfg=0, and thus Ci

Cgate
= −dVgate

dVi
.

For this work, inference of the floating-gate voltage was made by manipulating the

source and drain terminals until the drain current was measured to be a fixed current

Iref that is about an order of magnitude lower than threshold current of the the

device. The value of Iref that was used is 20nA. This allows inference of Vfg using the

simple subthreshold I-V relationship Vg = Vs− Vth− UT

κ
ln(

Iref
Ith

), where Vg is the gate

voltage (for a floating-gate transistor Vg=Vfg), Vth is the threshold voltage, UT is the

thermal voltage, κ is the subthreshold parameter describing the capacitive coupling
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of the gate to the surface potential, and Ith is the threshold current. The process

parameters Vth, κ, and Ith were extracted from measurements on non-floating-gate

transistors on the same chip. Having found a set of terminal voltages that results in

a known Vfg, this Vfg may be referred to any other set of terminal voltages using the

model of capacitive couplings to the Vfg, (2).

A set of measurements was devised that simultaneously characterizes the nonlinear

capacitor CV dd and the tunneling current in the device. It consists of three basic steps:

1) Measure Itun under a set of terminal conditions that yields a drain current of Iref .

Under these terminal conditions, Vfg can be inferred without having knowledge of

the C-V characteristic of CV dd. 2) Measure CV dd/Cgate under these same terminal

conditions. 3) Repeat measurements 1 and 2 over a range of floating-gate voltages,

using previously measured CV dd values to infer the Vfg that results from changing the

terminal voltage Vgate. Details of each of these steps are as follows.

1) Measure Itun at condition in which drain current is Iref . Vdd and

Vd terminals are fixed to voltages sufficient to put the transistor in saturation for

subthreshold current levels without allowing injection (2.9V and 1.9V were used in

this work). Set set Vtun to any fixed voltage that is sufficiently low to not cause

tunneling (8V was used in this experiment). Sweep Vgate and measure drain current

until a current of Iref is obtained. Pulse the tunneling line to a fixed tunneling

voltage (12.5V and 14V were used here in 2 different experiments) for a period of

time, Tpulse. After the tunneling pulse, once again sweep Vgate until the drain current

is Iref . The change in Vgate (before the tunneling pulse versus after) is proportional

to the charge that was transferred during the tunneling pulse: 4VgateCgate = 4Qfg.

The time-averaged tunneling current during the pulse is given by Itun,avg =
4Qfg

Tpulse
. If

4Vfg is small, then Itun is approximately constant during the tunneling pulse and

Itun,avg may be interpreted as the instantaneous tunneling current. Thus this step is

iterated, with the pulse time Tpulse being varied until 4Vfg is small but well above
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the measurement noise (10-20mV was used).

2) Measure CVdd/Cgate under these same terminal conditions. Repeat

step 1, but during the tunneling pulse, set Vdd 100mV higher than in step 1. Again,

repeat, but leave Vdd the same as in step 1 and set Vgate 100mV higher than in step

1. Collecting the results from steps 1 and 2 yields finite difference approximations for

the derivatives dItun
dVgate

and dItun
dVdd

. This yields an estimate of CV dd/Cgate, since Cvdd

Cgate
=

(dItun
dVdd

)/( dItun
dVgate

), which follows from the fact that Vdd and Vgate only affect Itun via

coupling to Vfg.

3) Repeat measurements 1 and 2 over a range of floating-gate voltage.

The basic operation described in steps 1 and 2 can be repeated, but with a shift of

Vfg from the reference condition (in which drain current is Iref ). This shift can be

achieved by added some change4V to the Vgate after finding the Vgate where the drain

current is Iref . This 4V can be varied over a wide range, and a value of Vfg can be

associated with each4V using the relationship Vfg = Vfg,ref +
´ 4V
0

Cgate

Ctotal
dVgate, where

Vfg,ref is the floating-gate voltage at which the drain current is measured to be Iref .

Ctotal/Cgate can be found by summing each of the linear capacitances Ci/Cgate with

the estimate of CV dd/Cgate from step 2. Note that while the ratios Ci/Cg are sufficient

for modeling the changes in Vfg that result from changes in terminal voltages, Cgate

still appears as a proportionality constant in the inferred values of Itun. For this work,

the nominal values of Cg (shown in Figure 17) were used to obtain estimates of Itun

in amperes.

This same approach can be used to characterize reverse tunneling, with the only

difference being the terminal voltages used. Those were 5.9V for Vdd, 5V for Vd, and

3.4V for Vtun (0 for Vtun during tunneling pulse).
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3.6 Process variation of tunneling properties

The balance of global tunneling and reverse tunneling described in this chapter enables

extremely accurate control of the floating gate voltage for an array of identical devices.

However, in practice the devices are found to vary substantially in their tunneling

properties. Figures 23 and 24, which depict data taken from the same FPAA using a

slightly less accurate characterization method than the one presented in this chapter,

illustrate some of the interesting features of the behavior of a large array of floating

gate devices in response to tunneling.

Figure 23 depicts the result of tunneling on large populations of three different

floating gate device layouts present in the FPAA. One striking feature of this figure is

the very substantial spread (up to nearly 2V) in the floating gate voltages of nominally

identical devices. This is in stark contrast to the convergence of floating gate voltages

that would occur if all of the devices had identical tunneling characteristics. A second

striking feature is the fact that the floating gate voltages roughly cluster by device

layout. While one might naively expect the characteristics of devices with different

layouts to be different, this result is still surprising because the layout of the tunneling

capacitors themselves are identical in all of these devices. In theory, this should

eliminate differences in the populations’ means of the device characteristics.

A little more insight into this issue is obtained by analyzing the final values of the

floating-gate voltage trajectories shown in Figure 23 in terms of the physical location

on the array of the devices. Figure 24 shows the results of this analysis, which yields

two clear conclusions. Firstly, the devices in the right-most column of the array have

significantly different characteristics than those in the rest of the array. Secondly,

the tunneling characteristics of a device depends on the specifics of the layout that

surrounds it. Both of these observations suggest that the systematic differences in
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Figure 23: Floating gate voltage trajectories of three large populations of different
device types during tunneling. The “switch” devices, shown in black, are the transis-
tors that make up the switch matrix for routing in the FPAA. The “diff pair input”
devices, shown in blue, are the input floating gates for the floating-gate based OTAs
described in Chapter 2 (they are the same as the “HC” devices in this chapter). The
“bias” devices, shown in red, are the programmable bias transistors for OTAs (they
are the same as the “LC” devices in this chapter). The floating gate voltages spread
significantly, and they also are seen to cluster by device type.

tunneling characteristics could be eliminated by appropriate placement of dummy

layout near the tunneling junctions. The nature and extent of the dummy layout

that would accomplish this is unknown at this time.
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Figure 24: Analysis of the distribution of the final floating gate voltages depicted in
Figure 23, according to physical location on the array. In a), the values are plotted
versus the column coordinate of the device. Because of the chip architecture, the
switch devices are found at most column addresses, while the devices in the CABs
(the OTA bias and differential pair devices) only exist on two column addresses in
each of the 4 columns of CABs on the IC. The the OTA bias and differential pair
devices found in the rightmost column of CABs tunneled significantly faster than the
same types of devices in the rest of the array. In b), the OTA bias devices alone
are plotted versus their location within a CAB (the local row address). Two of the
locations in the cab (rows 38 and 43) are observed to tunnel faster than the other
two locations (at rows 17 and 33).
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Chapter IV

ANALOG COMPUTATION USING FLOATING-GATE

ADAPTATION

As mentioned in Chapter 1, one desirable feature unique to floating-gate transistor

technology is the use of this embedded long-term analog memory to perform learn-

ing/adaptation. As an example, consider the radial basis function circuit described in

[49]. Its output approximates a diagonal-covariance vector Gaussian function of its 2

inputs, where the mean and variance parameters are set by programming floating-gate

transistors. As such, it could be used in conjunction with a “winner-take-all” block

to implement a classifier. One exciting possibility allowed by floating-gate transis-

tors is to train such a classifier by enabling processes that program the floating gate

using continuous-time feedback, and simply presenting training data. This model

for classifier training eliminates the explicit computation of parameters from statis-

tics of training data, which is a small step in the direction of the massively parallel

self-organization that brains are able to perform during development.

In order to explore the possibilities of such an approach, an FPAA that allows

continuous-time floating-gate programming is a useful tool. Since the circuit topolo-

gies that lead to the desired dynamics will be the subject of research, this FPAA

should ideally allow the user to leverage reconfigurability of the circuits used for

floating-gate injection. This inherently requires that the routing in the FPAA be capa-

ble of handling voltages sufficiently high to cause hot electron injection. This presents

an interesting problem: if injection-level voltages are routed through a switch matrix

of floating-gate transistors, how can the system be designed to prevent unwanted in-

jection on the switch devices? The answer to this question hinges upon getting the
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maximum achievable dynamic range of floating gate programming, an endeavor for

which the findings presented in Chapters 2 and 3 provide an excellent foundation. In

addition to careful choice of algorithms and parameters for injection and tunneling to

maximize the range of floating gate programming, the different properties of floating

gate nFETs and pFETs can be used to advantage in this endeavor.

This chapter covers the relevant properties of floating-gate nFETs, describes an

“adaptive FPAA” that takes advantage of these devices to create circuits that do

floating-gate programming in real time, and presents results from circuit measure-

ments on this FPAA.

4.1 The core device: floating-gate nFET

In a floating gate pFET, when impact ionization in the drain region creates hot

electrons, the electrostatic fields in the device pull the hot electrons up through the

gate oxide and onto the floating gate. In contrast, the fields in the drain region of an

nFET tend to pull hot electrons into the drain terminal. Thus, nFET hot electron

injection requires the generation of hot electrons in the channel of the device, before

the drain depletion region is reached. This process is expected to require a high

channel current and a high Vds. At low current levels, hot hole injection can occur by

exactly the same mechanism as hot electron injection in the pFET, but the holes need

significantly more (1-2eV) energy to cross the oxide than electrons do. As a result,

under low current conditions, hot hole injection is expected to occur in the floating

gate nFET, but at a rate that is significantly lower than the rate of hot electron

injection for floating gate pFETs with the same terminal voltages. This difference

means that the “off” switches in a switch matrix of floating gate nFETs will be able

to withstand higher voltages without appreciable injection occurring.

In order to quantify the effects of charge injection on the floating-gate nFETs

under the desired ranges of terminal voltages, characterization was performed using
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the circuit shown in Figure 25. The amplifier is used to fix the floating gate voltage

at Vref , and the slew rate of Vout provides a measure of the current being injected

to the floating gate. An nFET and pFET share the same floating gate so that the

charge may be easily manipulated by tunneling or hot electron injection in the pFET.

As expected from the theory, the results show that hot hole injection is the dominant

source of gate current when the channel current is low, and hot electron injection

dominates when the channel current is sufficiently high. The results also agree with

the qualitative predictions made by the theory regarding the rate of injection in the

nFET compared to the pFET; the maximum current over this range of terminal

conditions is approximately 1000x smaller than the corresponding maximum for a

floating gate pFET.

To my knowledge, this thorough characterization of the dependence of the nFET

gate current on terminal conditions, including the transition from hole injection to

electron injection as the gate voltage is increased, has not been shown elsewhere.

This characteristic itself is suggestive of some interesting possibilities for floating gate

adaptation using nFET injection, since the process has a stable equilibrium (unlike

pFET injection), and the same basic process can be used to add or remove charge

from the floating gate (as compared to the use of two different processes in floating

gate pFETs).

Because of the higher energies required for holes to cross the oxide barrier, hot

hole injection has been shown to cause more rapid changes to the structure of the

nFET device, and thereby to alter its properties by creating surface states in the

drain region [63]. In order to quantify the effects of hot hole injection on the device’s

properties, stress testing was performed, in which 350 cycles of injection of 7.5 pC of

charge were performed. The results are shown in Figure 26. The rate of hole injection
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Figure 25: Characterization of hot carrier injection for the floating gate nFET. a)
Circuit used for characterization. The amplifier is used to fix the floating gate voltage
at Vref , and the slew rate of Vout provides a measure of the current being injected
to the floating gate. An nFET and pFET share the same floating gate so that the
charge may be easily manipulated by tunneling or hot electron injection in the pFET.
b) Measured injection currents in the nFET for a range of gate voltages from 0.3 to
2.5V, and drain voltages from 4.4 to 6V. As expected from the theory, hot hole
injection is the dominant source of gate current when the channel current is low,
and hot electron injection dominates when the channel current is sufficiently high.
The maximum current over this range of terminal conditions is approximately 1000x
smaller than the corresponding maximum for a floating gate pFET.
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declined significantly over the course of the experiment, and the I-V characteristic of

the device under a gate sweep changed. Analysis of the I-V characteristic shows that

the threshold voltage shifts by about 180mV, and the subthreshold parameter “kappa”,

describing the slope of the I-V characteristic, decreases as well. The conclusions from

the study of the floating gate nFET are that the device will provide a good switch

for routing injection-level voltages, that there is some potential for using hot electron

and hot hole injection to enable “push-pull” control of the charge on an nFET floating

gate, but that the characteristics of the device are significantly altered by extensive

hot hole injection.

4.2 An FPAA with floating-gate adaptation

An FPAA that provides a reconfigurable framework for testing floating gate adaptive

circuits was designed and fabricated. The properties of floating gate nFETs described

in the previous section were leveraged to enable routing of injection level voltages

through a switch matrix of floating gate transistors. The floating gate nFETs used

for high voltage routing share their floating gate with a pFET, which is used to

perform hot electron injection for targeted programming. Bi-directional tunneling, as

described in Chapter 3, is used as a global operation to reset the floating gate voltages

to a high level. This “turns on” all of the nFET switches, so in the targeted injection

phase of programming, all of the switches except the ones that are to be left “on” are

injected. In order to maximize density and minimize the number of nFET switches

that must be programmed in this way, the high voltage-enabled nFET switch matrix

is restricted to a local switch matrix in each computational analog block (CAB). The

interconnect between CABs is implemented using floating-gate pFET switch matrix,

and the high voltage and low voltage switch matrices are separated by a programmable

nFET disconnect switch on each row of routing, as shown in Figure 27. Figure 27
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Figure 26: Results from stress testing of floating gate nFET by 350 cycles of 7.5
pC hot hole injection. a) The rate of hole injection declines significantly with the
amount of charge injected. Similar sweeps to those shown in Figure 25 were taken
after the test in order to verify that the peak of injection had reduced in amplitude,
not simply shifted. b) Gate sweeps taken every 30 cycles show a significant change in
the I-V characteristic of the device. c,d) The curves in b) were shifted horizontally
so as to coincide at a drain current of 1 uA. The required shifts are plotted versus
cycle number in c) (This roughly corresponds to threshold voltage shift), and the
shifted curves are plotted together in d), showing the reduction in the slope of the
characteristic with increasing cycle number.
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also shows the a die photo of the IC, with a designation to indicate a single CAB

and its associated switch matrix, as well as the schematics of the components that

are found in the CABs. The most important component in the CAB is the adaptive

floating gate, which has a self-contained amplifier for tunneling, and multiple FETs

that can be compiled into circuits through the routing. The tunneling amplifier allows

a voltage in the routable range (0-Vdd,inject) to control a higher tunneling voltage that

is applied to the floating gate.

The description of the chip architecture is completed by noting that in addition

to the global low voltage routing that connects the CABs, there are also six global

vertical lines in the high voltage routing that span all of the rows in the array. One

of these lines is in each column of tiles. These lines allow for high voltage nets to be

shared across CAB devices in the same column.

As discussed earlier, the dynamic range of the voltages that can be passed by the

nFET switches in the high voltage switch matrix is of paramount importance. In a

first version of the IC, the source/drain terminals of the nFET switches in the high

voltage switch matrix were grounded during programming of the array, as shown in

Figure 28. This resulted in the devices with high floating-gate charge (e.g., all of

the devices after global tunneling) to have a large voltage drop across the gate oxide

in a direction that promotes reverse tunneling (as described in detail in Chapter 3).

The resulting reverse tunneling current significantly reduced the maximum achiev-

able floating gate voltage for the nFET switches, thus limiting their dynamic range

to about 2.8V. A design change was implemented in the metal layers for the same

wafer set in order to set the source/drain terminals of the nFET switches to Vdd

during programming. This significantly reduced the effect of reverse tunneling, and

thereby improved the dynamic range to about 3.8V, which is sufficient for hot electron
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Figure 27: Overview of adaptive FPAA. a) Schematic of one tile (CAB and routing)
of the array, highlighting the different floating gate FETs used for low voltage and
high voltage routing, and for the disconnect switch between rows of high and low
voltage routing. b) Schematic of all of the components found in a single CAB. The
most important component in the CAB is the adaptive floating gate, which has a
self-contained amplifier for tunneling, and multiple FETs that can be compiled into
circuits through the routing. The tunneling amplifier allows a voltage in the routable
range (0-Vdd,inject) to control a higher tunneling voltage that is applied to the floating
gate. c) Schematic of the tunneling amplifier. All of the transistors in the amplifier
are 13.5V devices.
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injection at reasonable time scales (adaptation on the order of seconds to minutes) in

floating gate pFET devices like the adaptive elements in the CABs. The change to

the nFET devices, as well as the comparison of the resulting switch performance, is

shown in Figure 28.

While Figure 28 illustrated the performance of the high voltage switches for pass-

ing high voltages, the performance of the pFET and nFET switches at low voltages

must also be taken into consideration. As the global gate coupling voltage Vgate and

supply Vdd are increased in order to globally raise floating gate voltages and improve

the high voltage range of the nFET switches, this global change to the floating gate

voltage constitutes a trade-off between switch performance at high and low voltages.

For the pFET switches, the increase in their floating gate voltages reduces their con-

ductance at low voltages. This issue could be improved significantly by using different

global Vgate’s for the nFET and pFET switch matrices, a solution which will be im-

plemented in future designs. For the nFET switches, as the floating gate voltage is

raised, eventually the “off” nFET switches begin to conduct appreciably when one

of their terminals is at a low voltage. This tradeoff between “on” conductance at

high voltages and “off” conductance at low voltages of the nFET switches constitutes

the fundamental limitation on the dynamic range that can be routing using a single

floating gate switch element, and the range is ultimately limited by the amount of

charge that can be selectively injected on the “off” floating gates. Sweeps of the low

voltage switch behavior for both the nFET and pFET switches are shown for a range

of Vgate’s and Vdd’s in Figure 29. These measurements confirmed that with Vgate and

Vdd at 2.7V, good switch behavior is achieved in a range from about ground to 3.6V.
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Figure 28: Maximizing dynamic range of nFET switches by preventing unwanted
reverse tunneling during array programming. a) The schematic of the nFET switch
cell is shown before (left) and after (right) the metal mask change to the design.
Keeping the terminals of the nFET switches at Vdd during programming minimizes
the unwanted reverse tunneling that takes place. The result of a voltage sweep of a
single switch is shown b) before the change and c) after the change. The operating
range of the high voltage nFETs is seen to be extended by about 1V, a substantial
improvement that allows orders of magnitude higher hot electron injection currents
in the adaptive pFET CAB element. In both b) and c), the sweeps are shown for a
range of gate coupling voltages and supply voltages (Vgate’s and Vdd’s), both of which
can be used to globally increase the floating gate voltages, and thereby increase the
maximum range of the floating gate nFETs.
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Figure 29: Low voltage performance of a) nFET and b) pFET switches. The currents
in the nFET switch sweeps at high floating gate voltages are indicative of parasitic
currents coming from “off” nFET devices in the array, and the result in b) illustrates
the degradation of the pFET switch conductance at low voltage as the floating gate
voltage is raised. Both of these effects can be mitigated by choosing Vgate = Vdd =
2.7V , which still results in acceptable high voltage nFET switch performance.

4.3 Software support- routing tool

Advanced software tools have been designed to create an interface to FPAAs that is

easy to use for circuit experts and people with signal processing expertise who lack

circuit knowledge. The tools are described in detail in [60], and depicted in Figure 30.

Because the routing in this circuit requires special treatment of high voltage signals,

and has different switch matrix topology due to the separate high and low voltage

routing matrices, the adaptive FPAA described in this chapter does not fit easily into

this framework. Instead, an intermediate tool was created using MATLAB. This tool

requires the user to know the chip architecture and specify component placement in

CABs, but it takes care of the tedious details of determining and accumulating lists

of switch addresses for programming.
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Figure 30: System of software tools that constitute the design environment for typical
FPAAs. For the adaptive FPAA, this framework was replaced with a more low level
MATLAB tool that provides a compromise between software development time and
ease of use for the system.

4.4 Measured results- adaptive circuits

A good starting point for demonstrating the operation of circuits on the adaptive

FPAA is demonstration of continuous time injection and tunneling in an adaptive

pFET element from the CAB. The outcome of this experiment is shown in Figure 31.

These results show how a device with fixed terminal voltages can conduct a current

that varies of many orders of magnitude as its floating gate charge is changed. Also

it serves as a good illustration of the characteristics of injection and tunneling (which

were described in detail in Chapters 2 and 3).

One of the earliest examples of an adaptive floating gate circuit is the “autozeroing

floating-gate amplifier” (AFGA), originally described in [33]. The AFGA, depicted

in Figure 32, is a very compact implementation of a nonlinear bandpass amplifier, in

which the low frequency time constant is determined by the simultaneous injection

and tunneling processes. Because the parameters of tunneling and injection can
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Figure 31: Measured results from continuous-time a) tunneling and b) injection using
the adaptive pFET element in the CAB of the adaptive FPAA. The qualitatively
different dynamics of injection and tunneling are apparent. The rate of tunneling
monotonically decreases over the course of the tunneling exposure, while the injection
process is characterized by a positive feedback process that saturates at a large current
level.

easily be adjusted to produce extremely low gate currents, extraordinarily long time

constants can be observed in this circuit. Figure 32 shows measured step responses of

the amplifier for a range of different time scales (achieved by changing the tunneling

voltage Vtun, demonstrating time constants that range from under one minute to

about an hour.

One interesting feature of the AFGA circuit is its second order nonlinearity. Be-

cause of the exponential dependence of the injection current on the source-drain volt-

age drop Vsd, when the output deviates downward, the resulting “restoring force” is

stronger than that which results from an equal upward deviation. As a consequence,

the DC component of the output voltage rises with increasing input amplitude. This

effect is demonstrated in Figure 33, which shows the measured output of the AFGA

circuit with a sequence of increasing amplitude square wave inputs.
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Figure 32: Autozeroing floating gate amplifier circuit (AFGA) originally described in
[33]. The circuit diagram is shown in a) and the measured step responses, demon-
strating time constants from under a minute to about an hour, are shown in b).
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Figure 33: Measured output of AFGA circuit when the input is a square wave with
successively increasing amplitude. The nonlinearity of the amplifier is clearly seen to
result in an encoding of the signal amplitude in the output DC level.
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Figure 34: Floating gate differential pair circuit. The circuit diagram is shown in
a), and the continuous-time injection curve is shown in b). The unstable dynamics
eventually results in a condition in which all of the current is being conducted through
branch 1, and essentially no current is flowing through branch 2.

The dynamics of adaptive circuits become even more interesting when multiple

adaptive floating gates are coupled together in a single circuit. Perhaps the simplest

example is the floating gate differential pair, shown in Figure 34. The floating gate

differential pair has inherently unstable dynamics, since the branch of the differential

pair that draws more current will also inject faster, which will result in it receiving

even more current. This positive feedback process eventually results in one of the

two devices conducting virtually all of the current from the tail current source. This

process, starting from an initial condition of near perfect balance, is shown in Figure

34.

While the open loop differential pair’s dynamics are unstable (divergent) and

characterized by competition, incorporation of a load that reduces the field available

for injection when the current increases can result in stable (convergent) dynamics.

Specifically, implementing a fully differential OTA with common-mode feedback, as

shown in Figure 35, results in a circuit that tends to settle back to the same equi-

librium operating point, regardless of the input voltages. The step responses of this
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circuit, for single-ended steps on each input, are shown in Figure 35. The step re-

sponses clearly show the circuit settling back to the stable equilibrium after transient

perturbations caused by the input steps. The mismatch in the two branches of the

circuit (transistor I-V characteristics as well as injection and tunneling characteris-

tics) results in the equilibrium occurring at a point where the currents in the two

branches are not equal. Consequently, the amplitudes of the step responses are not

symmetrical.

The stable adaptation demonstrated in this fully differential amplifier provides

the interesting possibility of compensating for an unknown offset in an unsupervised

fashion during a “training phase”, and then ramping down the supplies to allow the

amplifier to operate without further changes to the floating gate charges. In order

to demonstrate that the offset that is learned in the training phase will have the

same impact after ramping down, differential sweeps of the amplifier before and after

ramping the supply voltage down are shown in Figure 35.

The floating gate differential pair also finds a useful application in the “bump”

circuit, invented by Tobi Delbruck [19], shown with floating gate inputs and active

loads in Figure 36. This circuit produces an output current that is approximately a

Gaussian function of the differential input voltage. This circuit is the core element

of the radial basis function circuit described in [49]. The difference in charge on the

two input floating gates provides an offset that sets the location of the peak of the

Gaussian. Figure 36 shows differential sweeps of the input before and after two periods

of adaptation. If the nFET bias current is just right, this adaptation would stably

converge to an equilibrium rather than diverging, but in the case of this experiment,

the nFET bias current was too strong, so the adaptation proved to be unstable. A

load with common-mode feedback such as the one shown in Figure 36 could be used

to achieve the stable adaptation.
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Figure 35: Fully differential OTA circuit with adaptive differential pair and common-
mode feedback. The circuit, shown in a), exhibits floating gate adaptation that is
characterized by a stable equilibrium, which is independent of the differential mode
of the input voltages. The settling back to this equilibrium after perturbations is
illustrated by the step responses on b) Vin1 and c) Vin2. The asymmetry of the step
responses is due to mismatch between the injection, tunneling, and I-V characteristics
of the two branches of the amplifier. The adaptation could be enabled to allow the
circuit to compensate an input offset, then disabled to allow the differential amplifier
to operate around that differential offset. This capability is verified by differential
sweeps of the amplifier before and after the supply voltage is ramped down to a
level that prevents adaptation. The result of these sweeps, shown in d), shows that
the offset that results from the adaptation is preserved when the supply voltage is
reduced.

78



www.manaraa.com

V
bias,p

V
bias,n

V
low

I
out

V
in1

V
in2

V
tun

V
tun

(a)

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−8

V
diff

 (V)

I bu
m

p (
A

)

first sweep

after some adaptation

after more adaptation

(b)

Figure 36: Adaptive “bump” circuit. The schematic is shown in a) and differential
sweeps are shown before and after two stages of adaptation in b). This circuit, under
this bias condition, is another example of an unstable, diverging form of adaptation,
much like the adaptive differential pair.

As described in detail in [42], the injection and tunneling in an adaptive floating

gate transistor can provide a measure of the correlation between the signals on the

drain and gate of the device. The basic intuition for understanding this is that if

more time is spent with the drain and gate both at low voltages, then there will be

more injection, resulting in a lower floating gate voltage. A circuit for illustrating

this effect, shown in Figure 37, was tested on the adaptive FPAA. Sinusoidal inputs

at 100 Hz were applied to the inputs of the circuit, and the relative phase of V1 was

shifted with respect to V2 and V3. Smoothly varying the phase shift from 0 to 2π

results in a cross correlation between these signals that varies from 1 to -1, then back

to 1. As shown in Figure 37, the equilibrium voltage Vout, to which the circuit settles

after several minutes, approximately tracks the cross-correlation between the inputs.

Some hysteresis was observed, as noted by the fact that the initial and final values of

Vout are not the same (the origin of this hysteresis is not known).

79



www.manaraa.com

V
3

V
1

V
2

V
out

V
tun

V
dd,inj

V
dd,inj

(a)

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

1.15

1.2

V
ou

t (
V

)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

T
delay

/T
period

C
ro

ss
−

co
rr

el
at

io
n

(b)

Figure 37: Adaptive floating gate correlation detector. The circuit, shown in a), is
based upon a pFET source follower, and a second pFET on the floating gate drives
a current into two series diode-connected nFETs. The voltage across the nFETs
provides a measure of the floating gate voltage, which is determined by a balance
of injection and tunneling processes. If the input signals V1,V2, and V3 are highly
correlated, the rate of injection increases, lowering the floating gate voltage. In b),
the equilibrium output voltage is plotted versus the phase shift from V1 to V2 and V3.
The output voltage is seen to track the cross-correlation of the inputs.
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Chapter V

A LEARNING-ENABLED NEURON ARRAY IC

The tools of CMOS circuit design and floating-gate transistor arrays can be brought

to bear to create an elegant solution for implementing spiking networks. This chapter

describes the full details of a neuromorphic IC beginning from the high-level design

philosophy and architecture, then “drilling down” to the circuit implementations.

The descriptions of the circuits are augmented by measured data demonstrating their

functionality.

5.1 Design paradigm and resulting architecture

The primary goal for design of this neuron array IC was to implement as many neu-

rons as possible while using biologically realistic transistor models for neurobiological

computation, as well as enabling synaptic plasticity approximating the spike timing

dependent plasticity (STDP) phenomenon observed in biological neurons. The model

neurons are single-compartment models, i.e. the dendrites are modeled as ideal wires.

Models for dendrites exist that would be compatible with this approach, but they were

excluded here in order to maximize the number of neurons that can be implemented.

Ease of use of the IC for simulating networks of neurons is greatly enhanced by an

address-event representation (AER) module that communicates precisely timed spikes

to and from the chip in real time. Figure 38 illustrates this approach, highlighting

the parallels between this system and neurobiological systems.

The resulting neuron array IC consists of 100 model neurons and a configurable

array of 30,000 synapses capable of creating arbitrary connectivity among the neurons.
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Figure 38: Illustrations of the design paradigm and its parallels to biology. In a), the
model for a single neuron is depicted. In b), the model for two neurons is shown, and
cartoons of some of the signal waveforms give a qualitative appreciation for the signal
flow.

The IC was fabricated in 350-nm double-poly CMOS, and the die consumes a 5x5mm

square. The model neurons are biophysically inspired channel-based models, which

were originally introduced in [24], and which exhibit Class 2 excitability ([8]). These

models constitute a favorable point in the tradeoff between biological realism and

density (which translates to size of networks that can be modeled). The synapses

are implementations of the “single transistor learning synapse” (STLS) described in

[32]. They produce post-synaptic current (PSC) waveforms that approximate those

measured in biological neurons, with programmable rise and fall times.

The STLS structure provides compact local storage of continuously variable synap-

tic weights (i.e., PSC amplitudes) by using floating-gate transistors, the core technol-

ogy in electrically erasable programmable read-only memory (EEPROM). Two thirds

of the synapses in the array are able to implement STDP according to the scheme

described in [52]. In addition to the synapses between neurons, the system includes

synapses from the AER interface onto each neuron. This allows for a wide range of

complex input stimulation patterns to the networks being simulated.
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Figure 39: Signal flow for a single neuron in the neuron array IC. The synaptic input
currents are summed on a wire. When the synaptic input currents are sufficiently
strong, the model neuron emits a spike, which is picked up by the spike detector
block and transmitted to the AER system and a gate waveform shaping circuit. The
gate waveform shaping circuit conditions the pulse from the spike detector to create
the desired time course for the post-synaptic currents on all of the neuron’s output
synapses.

The basic signal flow in the system is described in Figure 39, which depicts the

signals processed by a single neuron in the system. The inputs to the neuron are an

array of synaptic currents, which arrive asynchronously when the presynaptic neurons

spike (just as is the case in a biological neuron). The currents all connect in parallel to

the same wire, which automatically results in summation of the synaptic inputs. The

model neuron is displays electrical excitability, just as biological neurons do. Specif-

ically, if the perturbation provided by the total synaptic current is sufficiently high,

a positive feedback process in the channel model leads to a stereotyped excursion of

the membrane voltage, or an “action potential” in biological terms (more colloquially,

a “spike”). When the model neuron emits a spike, this event is sensed by a “spike

detector” circuit, the output of which is an asynchronous digital pulse. This pulse

is reported by means of the the AER module, and it also simultaneously activates

the gate waveform shaping circuit. This circuit transforms the digital input pulse

into a waveform that can be applied to a synapse in order to produce a post-synaptic

current with a time course that matches the ones produced by biological synapses.

The output of a single gate pulse shaping pulse connects to all of the output synapses
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Figure 40: Top level architecture of the IC. In a) the connectivity of the synapse array
is shown, including the partition of synapses into recurrent connections, AER inputs,
learning-enabled, fixed weight, and configurable excitatory/inhibitory synapses. All
of the STDP synapses are excitatory. In b) a die micrograph shows the amount of
die area dedicated to the neuron models (Soma Array), the synapse array, and the
gate waveform shaping circuits (Triangle Circuits).

for this neuron, just as a spike in a biological neuron triggers post-synaptic currents

in the synapses at the ends of each branch of its axon.

The configurable synapse array features learning and fixed-weight synapses, synapses

that are selectable as inhibitory or excitatory, and all-to-all connectivity between neu-

rons and input channels from the AER module. Setting synaptic weights in this ma-

trix allows networks to be created by interconnecting multiple instances of the block

shown in Figure 39. The synapse array and a die micrograph of the IC are shown in

Figure 40.

The system uses Matlab-based tools for defining network topologies and parame-

ters. The syntax of this system closely follows PyNN, a network description language

developed with the goal of facilitating interoperability of neuromorphic hardware

([17]). Some example code for specifying a network is depicted along with a graphical

interpretation in Figure 41.
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x=a.create( Neurons ,{},2}
y=a.create( Neurons ,{},3}

z=a.create( Neurons ,{},1}

a.connect(x,y,1e-6)
a.connect(x(2),z,1e-6) 
a.connect(x,x(1),1e-5)

set(y(2:3),{ leak  1e-8})

y(1)

y(2)

y(3)

x(1)

x(2)

z(1)

Figure 41: PyNN-based Matlab code for setting up a network simulation.

5.2 Circuits for spiking network implementation

The neuron consists of a circuit that models a population of voltage gated sodium

channels and another circuit that models a population of voltage gated potassium

channels. The interaction of the two produces a dynamical system that models the

membrane dynamics at the axon hillock (the site of action potential initiation) in

a biological neuron. The neuron models, which were originally described in [24],

were designed to match the behavior of voltage gated channel populations in voltage

clamp experiments, which are a foundational method of characterizing the dynamics

of excitable tissues pioneered by Alan Hodgkin and Andrew Huxley [36, 35]. The

channel models are shown in Figure 42, which also shows the manner in which they

are connected in order to form a model neuron.

The voltage gated sodium channel in biology has two different gating mechanisms,

one that closes the channel in the resting state, and one that closes the channel in

the depolarized state after it has opened. This results in a step response (in a voltage

clamp experiment) that is similar to that of a bandpass filter. That is, in response
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Figure 42: Models for voltage gated channels that constitute a model neuron. The
voltage supplies and biases Vamp, Vss,amp, ENa, EK , VgK are shared by all neuron
models in the array. The use of floating gate transistors in the models allow for their
conductances and frequency responses to be programmed individually. This allows
for networks of neurons with heterogeneous properties to be modeled.

to a step in membrane voltage, the sodium current initially rises, then (more slowly)

falls back down. In contrast, the response of a voltage gated potassium channel

has a single gating mechanism, and its steady-state conductance increases as the

membrane is depolarized. In other words, its response to a step input in a voltage

clamp experiment is similar to that of a low pass filter. With this guiding intuition,

configurations of transistors which result in band pass and low pass step responses

were found for modeling the sodium and potassium channels, respectively. The gains

and poles of these filters can be tuned by various bias voltages in the circuit, which are

implemented using floating-gate transistors on the neuron array IC, enabling theme

to be set independently. This mitigates the effects of device mismatch, and also allows

for simulations of networks of neurons with heterogeneous characteristics.

The neuron array IC includes a circuit for performing voltage clamp measurements

on the channels, shown in Figure 43. Measurements of the responses to a depolarizing

pulse in the two channels are shown in Figure 44. The rise and fall times of these
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Figure 43: Schematic of transimpedance amplifier for making voltage clamp measure-
ments. The voltage Vclamp is used to control the membrane voltage, and the channel
model is represented by the current source Iin. The voltage Vout− Vin is proportional
to the input current, so Vout and Vin are buffered out to pads (buffers not shown in
this figure). There is a 5-bit programmable variable compensation capacitor and an
OTA that can provide a range of known currents in order to calibrate the amplifier’s
characteristic precisely. Small squares are used to denote connections to pads, and
the capacitive attenuators shown on two OTAs have about a 10x attenuation factor.

responses were tuned to match realistic values for biological neurons. One flaw in

the design manifests itself in the potassium channel response. The response to the

step starts with an instantaneous step up, which then settles to a still higher value

according to the programmed time constant, whereas a true low pass filter would not

exhibit the instantaneous step. This nonideality is caused by two factors. Firstly,

the transistor that forms the conductance to EK is pFET with its n-well connected

to a fixed potential rather than to the source. Secondly, the capacitance CK does

not dominate the total capacitance at the net labeled VK . This nonideality of the

potassium channel causes the potassium current to turn on faster than it does in a

biological neuron, reducing the excitability of the model neuron. This makes it a little

bit tricky to tune the properties of the model neuron.
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Figure 44: Step responses in a voltage clamp experiment of a) the potassium channel
model and b) the sodium channel model. Note the instantaneous step in the potassium
channel’s response. This is a result of the fact that the n-well of the potassium
conductance is not connected to its source, as well as the fact that the capacitor CK
does not dominate the total capacitance at the net labeled VK in Figure 42. The
response in the sodium amplifier has a very short transient that is an artifact of the
voltage clamp circuit.

The synapses are arranged in groups of 100. Each group has one synapse onto each

neuron, and all of the synapses in a group are activated by the same input (either an

AER input or a spike coming from one of the neurons). There are two types of these

synapse groups. One of the types implements an STDP-type learning rule, while the

other has fixed synaptic weights. Schematics of these two types of synapse groups

are shown in Figures 45 and 46. The fixed weight synapses can be configured as

excitatory or inhibitory by means of a multiplexer that selects the reversal potential

of the synapse (Eexc for excitatory and Einh for inhibitory). This selection affects all

of the synapses in a particular group. This constraint was an architectural necessity,

but it is exactly analogous to the fact that biological neurons produce only a single

type of neurotransmitter at all of their synapses. However, unlike biological neurons,

the neurons on this IC are not necessarily constrained to form only excitatory or only

inhibitory synapses. This extra freedom is a result of the fact that each neuron in the

IC can connect to two synapse groups, one which is STDP enabled (and is therefore
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Figure 45: Schematic for STDP-enabled synapses. The synapse consists only of the
two transistorsM1 andM2 and the capacitors connected to its gate. The gate voltage
Vgate is provided by the circuit shown in Figure 47. The current mirrors that level
shift the synaptic current, the cascode pFET, and the tunnel and drain control blocks
are all shared by all of the synapses that connect to a particular neuron. The cascode
device prevents hot electron injection in M2, while the current mirrors allow the
current to come from the voltage supply Eexc. The tunnel control and drain control
blocks, described later in this chapter in detail, mediate the hot electron injection
and tunneling processes that implement the STDP learning rule.

excitatory), and one which has fixed weights (and can be configured as excitatory or

inhibitory).

In both types of synapses, the gate waveform determines the time course of the

synaptic current, and its amplitude dictates a baseline synaptic current amplitude.

The floating gate charge on all of the synapse defines a multiplier that scales this

baseline amplitude. The gate waveforms are generated by the gate waveform shaping

circuits, shown with the spike detector circuit in Figure 47. The measured output

from a gate waveform shaping circuit and a measured excitatory post-synaptic current

(EPSC) are also shown in Figure 47.

The use of floating gate transistors for the synapses leads to a highly flexible

simulation platform with a very dense storage of synaptic weights. A comparison
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Figure 46: Circuits for the fixed weight synapses. a) Diagram of the synapse and mul-
tiplexer for selecting the polarity of the synapse group (excitatory versus inhibitory).
Changing the logic controlling this multiplexer changes the reversal potential of the
synapse (Eexc for excitatory and Einh for inhibitory). The fact that this choice af-
fects all of the synapses in a particular group was an architectural necessity, but it
is exactly analogous to the fact that biological neurons produce only a single type
of neurotransmitter at all of their synapses. b) Diagram of the circuit that selects
the input for a group of fixed weight synapses. The polarity and input type are
independently selectable for each of the 100 groups of fixed weight synapses.

of synapse density for other neuromorphic network simulator ICs is given in Table

4. The use of floating-gate transistors also allows for a fairly simple implementation

of synaptic plasticity via STDP, and significantly mitigates the effects of process

variation that increasingly plague IC technologies as we scale to processes with smaller

feature sizes.

The AER module consists of a receiver and a transmitter. Functional block di-

agrams for these components are shown in Figure 48. The transmitter continually

loops through the 100 neurons in the array, checking if its spike detector has emitted

a pulse. When it encounters a neuron that has spiked, it immediately sends the ad-

dress of that neuron to the microcontroller on the system PCB. The receiver delivers
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Figure 47: Gate waveform shaping circuit and measured synaptic current. a) Circuit
diagram for spike detector and gate waveform shaping circuit. The fall time of the
gate waveform is set by the width of the pulse output from the edge detector (which
is programmable by a floating gate voltage), and the rising and falling slopes are
set by the voltages V1 and V2, which are also set by floating-gate based bias voltage
generators. b) Measured output from the gate waveform shaping circuit. c) Measured
excitatory post synaptic current. The waveforms in b) and c) were not taken in the
same experiment, so the time courses of the two waveforms are not the same.

Table 4: Comparison of synapse density and function. The FACETS IC, Stanford
STDP, INI IC 1, and INI IC 2 chips are described in detail in ([57, 56, 5, 38, 14]) .
The normalized synapse area is computed by dividing the synapse area by the square
of the process feature size.

Chip Process No. of Synapse Normalized
Description Node (nm) Synapses Area (µm2) Syn. Area

GT Neuron IC 350 30000 133 1088
FACETS IC 180 98304 108 3338

Stanford STDP 250 21504 238 3810
INI IC 1 800 256 4495 7023
INI IC 2 350 16384 3200 26122
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Figure 48: Functional block diagram of the AER module on the IC. a) Top-level
signal flow depicting the various channels of communication with the microcontroller.
b) AER receiver diagram. c) AER transmitter diagram

pulses to the groups of synapses that are allotted as AER input channels. When

the microcontroller sends in an address, it immediately delivers a pulse on the line

specified by that address. The communication with the microcontroller uses 4-phase

handshaking, and the address bits can be configured to be sent serially or in parallel

(this selection can be made independently for the receiver and transmitter). The logic

for the AER module was synthesized from a couple dozen lines of Verilog code, and it

is synchronous logic. The IC has a 25MHz ring oscillator to generate the clock, and

the clock can also be supplied externally. At a clock speed of 25 MHz, the transmitter

is able to scan all of the neurons in the array in 4us. This sets the maximum latency

for the off-chip communication of any given spiking event, and is therefore an upper

bound on the timing errors in the system, provided the total spike rate in the network

is lower than about 200k spikes/second. The handshaking and communication of an

event takes between 1 and 2 us, which limits this interface to 500k spikes/second.

This rate corresponds to 5kHz spiking on all 100 neurons, which is well above the

firing rates that are typical of biological neurons.

92



www.manaraa.com

Since this neuron array IC was not an incremental change from a previous IC,

but was a synthesis of many newly designed circuit blocks in untested configurations,

special care was taken to design the IC with testing and debugging in mind. The

outputs of most of the circuit blocks are multiplexed out to debugging pins, and

many of the blocks inputs can be directly switched to demultiplexers coming from

the pads. These design features proved invaluable throughout the course of testing

the IC and understanding the results observed in network simulations performed on

the IC.

5.3 Characteristics of neuron behavior

One of the key features of the biological neurons is the thresholding of inputs. This

behavior can be illustrated by measuring the neuron’s responses to an excitatory

PSC of varying amplitudes, or similarly by measuring the response to a number

of synaptic inputs that all add current to the neuron simultaneously. The results

of these simulations using a single neuron are depicted in Figure 49. In both of

these simulations, subthreshold depolarizations can be observed in response to weaker

stimuli, while stronger stimuli cause an action potential on the target neuron, as

expected.

Integrate-and-fire type neurons (as well as biological neurons) are often described

in terms of their f-I characteristics, that is, the relationship between a DC input

current and the firing rate. Although an analysis of the model neuron used in this

IC concluded that it can undergo a Hopf bifurcation with respect to the DC input

current [8], oscillations in response to a DC current were not observed, rendering

the f-I characteristic a useless concept for this neuron model. Perhaps the disparity

between the analytical prediction and the measured behavior is the result of the faster

response of the potassium channel discussed in Section 5.2. In any case, the lack of
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Figure 49: Measurements of membrane voltage response to synaptic inputs, illus-
trating the excitatory threshold for spiking in the neuron model. All waveforms in
this figure are averaged over about 20 captures in order to reduce the effect of power
supply noise that is present in the measurement system. a) Three input synapses
with approximately equal conductance are connected, and the response to various
subsets of them are shown. b) The response to synaptic inputs of varying amplitudes
is shown (the synaptic weight, normalized to the minimum weight that produced a
spike, is shown).

a response to DC input currents is not necessarily a major concern in light of the

fact that the inputs the neurons actually come in the form of time-varying synaptic

currents. With this in mind, an analogous concept to the f-I characteristic could be

termed a “p-I characteristic”. The likelihood of a synaptic input current producing a

spike is found to increase with increasing synaptic current amplitude. The result of

characterizing this dependence for several different model neurons is shown in Figure

50.

An unintended, but interesting consequence the circuits used to create the synap-

tic gate waveforms is the fact that if a neuron fires two spikes in rapid succession,

the amplitude of the post-synaptic current resulting from the second spike is larger

than that of the first. This is similar to the phenomenon of paired pulse facilitation
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Figure 50: Measured relationship between synaptic input amplitude and likelihood
of the synaptic input stimulating an action potential in the neuron. If the input is
sufficiently weak, there is no chance that it can cause an action potential. If it is suf-
ficiently strong, it is certain to cause an action potential. There is a relatively narrow
region of input amplitudes where the probability is seen to vary continuously between
these two extremes. The family of curves shown here is this “p-I” characteristic that
was measured for 6 different neurons.

observed in biological neurons. In biological neurons, paired pulse facilitation re-

sults from the fact that the concentration of calcium ions in the presynaptic terminal

(which controls neurotransmitter release) is still elevated from the first spike when the

second spike arrives [65]. If the voltage output of the gate waveform shaping circuit

is considered to be a representation of the presynaptic calcium concentration (which

is at least a qualitatively valid analogy), then the mechanism of the paired pulse

facilitation phenomenon in the neuron IC is the same. Figure 51 depicts measured

outputs from the gate waveform circuit and the membrane voltage in a scenario that

illustrates this paired pulse facilitation phenomenon.

Temporal summation is another important characteristic of neurons. Synaptic in-

puts currents add charge to the membrane voltage, and if the excitation is insufficient

to trigger an action potential, the perturbation decays in time. When multiple input

current pulses are applied rapidly enough, the perturbations to the membrane voltage
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Figure 51: Illustration of the paired pulse facilitation phenomenon that is observed in
this system. The second pulse arrives before the gate waveform has recovered to its
steady-state value, which results in a greater amplitude gate waveform. This makes
the second input stronger than the first, and thus it is consistently able to produce a
spike. While the second gate waveform pulse appears to clip at about 300mV, this is
actually due to the nFET input buffer amplifier that drives this signal off chip. The
signal that goes to the synapses can slew clear to ground. These data were averaged
for 10 trials to reduce high frequency noise.

can accumulate to a level that does trigger an action potential. This phenomenon is

illustrated in Figure 52, which tests the simplest scenario for temporal summation,

i.e. the summation of two synaptic current pulses at different times to cause a spike.

If the two inputs coincide they are certain to cause a spike, then as the time interval

separating their arrival grows, the likelihood of producing a spike decreases. This plot

also shows one other interesting effect. There is a range of time intervals at which

the interaction of the two inputs actually reduces the likelihood of the second input

causing a spike. This is due to the underdamped nature of the bandpass amplifier for

the sodium channel model. The amplifier is ringing a little bit in response to the first

input, and this leads to a period of time during which the neuron is less excitable

than normal. This is somewhat similar to the phenomenon of subthreshold resonance

that is observed in biological neurons [37].
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Figure 52: Data illustrating the effects of temporal summation of inputs. In a),
the membrane voltage is compared for a single synaptic input (shown in blue) and
two successive inputs (shown in green). In b), the probability of eliciting a spike by
providing a pair of sequential excitatory inputs is plotted as a function of the timing
difference between the two inputs. The two curves shown are from two different trials
of the experiment. There is a clear effect of enhanced spike probability for inputs that
arrive within about 2 ms, and a suppression of spikes if the inputs arrive between 2
and 6 ms apart. This suppression is the result of the underdamped characteristic of
the sodium amplifier.

If the low corner frequency of the bandpass amplifier in the neuron model is suffi-

ciently low, the system exhibits a stable limit cycle. This results in stable oscillations

of the membrane voltage. A typical waveform for the membrane voltage is shown in

Figure 53. In this dynamical state, the falling edge of the membrane voltage turns

off the potassium channel very strongly, and the resulting rebound of the membrane

voltage immediately reactivates the positive feedback in the sodium channel, causing

another spike. The width of the spike is determined by the time constant of the

high-pass corner of the bandpass amplifier (which corresponds to the time constant

for inactivation of a sodium channel). Thus, as this time constant is lengthened,

the spike width (and thus the spiking period) is lengthened as well. Figure 53 also

shows the dependence of the period of spontaneous oscillations upon the bias voltage

of a pFET that sets the DC current that flows in the bandpass amplifier. As the

bias voltage goes up, the current goes down, which raises the DC operating point
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Figure 53: Properties of the stable oscillations of the membrane voltage. a) Typical
waveform for the stable oscillations. b) Variation of oscillation period with the pFET
bias voltage that sets the bias current in the sodium bandpass amplifier. As the
bias voltage goes up, the current goes down, which raises the DC operating point
of the amplifier. This, in turn raises the high pass corner frequency, which shortens
the period of oscillations. At some point, the high pass corner frequency becomes
sufficiently high that the rebound from the falling edge of the spike is not sufficient
to trigger another spike. At this point, the stable oscillations cease.

of the amplifier. This, in turn raises the high pass corner frequency, which shortens

the period of oscillations. At some point, the high pass corner frequency becomes

sufficiently high that the rebound from the falling edge of the spike is not sufficient

to trigger another spike. At this point, the stable oscillations cease. In this state, the

circuit is sufficiently excitable that pulses of input current can stimulate spikes, yet

insensitive enough to maintain a stable resting membrane potential in the absence of

any input stimuli. This behavior is the best qualitative match to the dynamics of the

typical cortical neuron, and therefore it is the bias point that is chosen as the default

for the neurons in network simulations.

One more important characteristic of neuron dynamics is the response to in-

hibitory inputs. In this model neuron, if the reversal potential for inhibitory synapses
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(Einh in Figure 46) is sufficiently low, then inhibitory synaptic currents cause a hyper-

polarization of the membrane voltage, and the recovery from this hyperpolarization

is a sufficiently strong perturbation to cause a spike in the membrane (as shown in

Figure 54). This phenomenon is somewhat similar to that of post-inhibitory rebound

that is observed in biological neurons [51]. However, it is a stronger effect than post-

inhibitory rebound, and can in general lead to all inhibitory synaptic inputs triggering

spikes, which is an unwanted behavior. This situation can be avoided by setting the

inhibitory potential Einh to a value very close to the resting membrane potential (as

it is in the biological neurons). When this approach is taken, the membrane voltage

is not significantly perturbed by inhibitory synaptic inputs that arrive in the absence

of excitatory inputs. However, if the conductance of an inhibitory synapse is ele-

vated at the same time that excitatory currents are adding to the membrane voltage,

the inhibitory conductance will prevent the excitatory currents from depolarizing

the membrane as much as they would have done in the absence of the inhibitory

conductance. In neurobiology, this behavior of inhibitory synapses is referred to as

“silent inhibition” or “shunting inhibition” [26]. An illustration of this mechanism of

inhibition preventing an excitatory input from causing a spike is shown in Figure 54.

5.4 Circuits for synaptic plasticity

It was shown by Shubha Ramakrishnan that applying waveforms on the drain and

tunneling voltage of a synapse following each post-synaptic spike, in concert with

the gate waveform that is applied to the gate of a synapse following a pre-synaptic

spike, results in a combination of tunneling and injection to the floating gate of

the synapse in a way that approximates the STDP learning rule [52]. This relies

on the fact that the drain pulse causes faster injection if it coincides with the gate

waveform, and similarly the tunneling pulse will cause faster tunneling if it coincides
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Figure 54: Responses of neuron model to inhibitory input. a) A very small amplitude
inhibitory synaptic current can result in a spike if the inhibitory reversal potential is
too low. This unwanted behavior can be eliminated by setting the inhibitory reversal
potential sufficiently high (to a value of 30-50mV below EK). b) With Einh set to an
appropriate level, the effect of inhibition to prevent a spike can be observed. In this
experiment, an excitatory input was delivered a short time after an inhibitory one. If
the excitatory input arrives too soon after the inhibitory input (in this case, 0.5 ms),
it fails to elicit a spike. If it arrives a little later, after the inhibitory conductance
has begun to fall, then it causes a spike (both traces averaged over 10 trials to reduce
high frequency noise).
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Figure 55: Waveforms that orchestrate the STDP learning rule. Arrows indicate the
timing of the pre and post-synaptic spikes, as well as the fact that the drain pulse
and Vtun are time-locked to the post-synaptic spike while Vgate is time-locked to the
pre-synaptic spike.

with the gate waveform. Thus if a drain pulse shortly follows the post-synaptic action

potential (with a timing that is about equal to the fall time of the pre-synaptic gate

waveform), and a long tunneling pulse occurs some time after the drain pulse, the

desired dependence of the change in synaptic weight upon the spike timing can be

achieved. These waveforms are illustrated in Figure 55.

The basic signal flow for producing the tunneling, gate, and drain pulse waveforms

is shown in Figure 56. There are two main branches in the spike detector, one that

sends its inputs to the AER transmitter and the gate waveform shaping circuit (as

discussed earlier and depicted in Figure 47), and a second that initiates tunneling

and drain pulse waveforms. The circuits for the drain control and tunnel control are

shown in Figure 57. Both circuits use a sequence of slew-rate limited inverters, “one-

shot” circuits, and simple logic gates to produce a pulse of a programmable width that

follows the post-synaptic spike by a programmable delay. In addition, the tunneling

control circuit has a high-voltage slew-rate limited inverter that transforms the low

voltage digital pulse the desired tunneling waveform at a sufficiently high voltage
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Figure 56: Signal flow for pulse timing circuits, including the gate waveform circuits
and the circuits that generate the signals for STDP. Note that the voltage Vgate is
driving the output synapses of the neuron that has just spiked, while the STDP signals
(Vtun and the drain pulse) are connected to the input synapses of this neuron. The
gate waveforms that influence the STDP rule on the input synapses of this neuron
are the ones driving those synapses.

level to cause tunneling. Both circuits feature a logic bit that controls whether or not

STDP is enabled (this bit can be set independently for each neuron in the array).

For completeness, the circuit diagrams for the one-shot circuits employed in pulse

timing blocks are shown in Figure 58. The latch-based one-shot produces a pulse

with programmable width in response to a rising edge on its input. Because of

the hysteresis inherent in the latch structure, this circuit filters out glitches that

accompany its input pulses, which is a desirable feature for a circuit whose input

comes from a thresholded analog voltage (this is the circuit that implements the

“edge detect” blocks in Figures 47 and 56). The falling edge one-shot produces a

pulse with programmable width in response to a falling edge on its input, and it does

not provide glitch filtering.

Figure 55, which was referenced earlier to illustrate the timing of the STDP wave-

forms, shows measured data from the outputs of the STDP timing circuits. The
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Figure 57: Circuits for timing and shaping a) the drain pulse and b) the tunneling
voltage Vtun. The voltages Vb and Vb1 are set by floating-gate transistors, and are
used to set the delay between pre-synaptic spike and drain pulse or Vtun waveform,
respectively. The voltage Vb2 is also set by a floating-gate transistor, and it sets the
fall time of the Vtun waveform. The global bias voltage Vclamp is used to set the
baseline value for Vtun. The input Vin to these circuits is shared, and is the output of
the edge detect block shown in Figure 56.

resulting STDP rule can be characterized by application of repeated spike pairings at

a synapse, with controlled timing between the pre-synaptic and post-synaptic spikes.

Varying this timing produces a characterization of the change in synaptic weight as

a function of the “pre-post” spike timing, shown in Figure 59. This characteristic is

the classic illustration of the STDP phenomenon, originally characterized in detail in

electrophysiological data by Bi and Poo [10]. The characteristic shown in Figure 59 is

qualitatively similar to the one described by Bi and Poo, with a few differences. The

width of the peaks in the characteristic are only a few milliseconds wide, as opposed

to widths of tens of milliseconds in the biological measurements. The width of the

potentiation peak is controlled by the shape of the gate waveform, so extending the

duration of the gate waveform would widen this peak. However, it would also increase

the duration of the post-synaptic currents. The width of the depression peak could be

extended by increasing the duration of the tunneling waveform, as was done in [52].

However, for reasons that are not understood at this time, decreasing the bias current
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Figure 58: Circuit diagrams of a) latch-based one-shot circuit and b) falling edge one-
shot circuit. The latch-based one-shot produces a pulse with programmable width
in response to a rising edge on its input. The latch-based circuit filters out glitches
that accompany its input pulses. The falling edge one-shot produces a pulse with
programmable width in response to a falling edge on its input, and it does not provide
glitch filtering.
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Figure 59: Measured STDP characteristic, showing dependence of the change in
synaptic weight on the timing separating the pre-synaptic and post-synaptic spikes.

in the high-voltage slew-rate limited inverter that creates the Vtun waveform does not

work to increase the duration of the tunneling waveform. Simulations and “pencil

and paper” analysis have been unable to provide an explanation for this observed

behavior. Investigations are underway to learn more about this problem, as well as

to modify the scheme for STDP so as to decouple the width of the potentiation peak

from the time course of the synaptic current.
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Figure 60: Long-term evolution of synaptic weights when the synapses undergo a)
repeated post-pre spike pairings, and b) repeated pre-post spike pairings. in both
cases, the synaptic weights are seen to vary over about 4 orders of magnitude.

One interesting question about the STDP rule is what happens over the long

run to synapses that are repeatedly potentiated or repeatedly depressed? Do the

synaptic weights get arbitrarily high or low, or is there a saturation that occurs?

This question is of interest in the neurobiology community, and the answer to this

question has consequences for how the synaptic plasticity process affects the signal

processing properties of the neural network [11]. For the implementation of STDP

described here, the answer is that many repeated depression events do indeed cause

the synaptic weight to fall arbitrarily low (although the rate of decrease slows as the

synaptic weight gets smaller). In contrast, with many repeated potentiation events,

the synaptic weight eventually reaches a stable “steady-state”. The synaptic strength

at this stable equilibrium is enormously high, and is well above the minimum weight

required for a single post-synaptic current to reliably elicit a spike. The evolution of

the synaptic weights with repeated pulse pairings is shown in Figure 60.
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5.5 System tools enabling network experiments

The hardware and software platform described in Chapter 2 is used for testing, de-

bugging, and collecting data on this neuron array IC. Several more specialized tools

were developed specifically for this system. These include automated routines for

mismatch correction, a compiler for PyNN descriptions of networks, and microcon-

troller code for handling the AER communication. Each of these tools is described

briefly here.

The bias currents controlling fall time and upward and downward slopes for the

gate waveforms are set by floating-gate transistor programming. While floating-gate

programming itself is fairly accurate, device mismatch between the programming

transistor and the in-circuit transistor (M1 and M2 in Figure 4) results in significant

variability in these currents. The relationship between currents in the programming

transistor and in-circuit transistor can be inferred by measuring the gate waveforms.

Knowing this relationship allows for a correction to be introduced when the floating-

gate transistor is programmed. The result is a striking improvement in the matching

among the gate waveform circuits, shown in Figure 61. This illustrates extremely

valuable ability to cancel device mismatch that is allowed by using floating-gate tran-

sistors (without this ability, the designer would have to consider device mismatches

as a fundamental limitation of the fabrication technology). A MATLAB software

tool was created to automate the inference of the device mismatch characteristics

and the application of the correction during floating gate programming. Because of

the significant sensitivity of the subthreshold transistor to its gate voltage, the result

shown in Figure 61 before mismatch compensation is nearly un-usable for network

experiments. Consequently, the importance of this tool for the system cannot be

overstated.
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Figure 61: Results from mismatch compensation of gate waveform circuits. In the
left two panes, the gate waveform outputs from 100 different circuits are shown before
and after mismatch compensation. The panes on the right compare the histograms
of slopes of these waveforms before and after the mismatch compensation.

A MATLAB software tool was created to support the definition of network topolo-

gies, synaptic weights, and neuron parameters in a syntax that is compatible with

PyNN, as shown in Figure 41. This tool handles the mapping from these user-level

descriptors of the network configuration to a list of floating-gate transistor addresses

on the array and the targets to which these transistors should be programmed. It also

handles the setting of the various digital logic signals to select synapse input types

and polarity and to enable STDP on the desired set of model neurons.

Custom software for the microcontroller on the PCB was required in order to

allow network experiments to simultaneously send and receive AER events with the

low latency, high throughput, and minimal timing errors. An input stimulus can be

defined by the PyNN code by specifying a set of input spike times and channels.

This data is communicated to the microcontroller and stored. The microcontroller

has embedded digital counters that allow it to time intervals without using the CPU.

One of these counters is used for timing the inter-spike intervals for the AER inputs,
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and one is used to time inter-spike intervals for the AER outputs from the neuron IC.

When the counter for the input timing reaches the desired interval, the CPU receives

an interrupt that is handled by sending the address of the AER input that is scheduled

to receive a spike at that time. When the neuron IC initiates the handshaking process

(indicating that the AER module has sensed a spike on the IC), the CPU receives

an interrupt that is handled by reading and resetting the counter for AER output

inter-spike intervals, reading the address of the neuron that spiked from the neuron

IC, then storing the address and counter value that were read. This process can be

scheduled to run for a fixed duration, or until a maximum number of spike events have

been read. The two 14-bit counters have selectable clock division factors, allowing

some flexibility in the tradeoff between temporal resolution and maximum interval

that can be timed. When this AER experiment is complete, the saved spike data is

sent to MATLAB, where it can be plotted in the form of a raster plot.

5.6 Power efficiency analysis

Power consumption has been discussed as one of the fundamental advantages of the

neuromorphic approach to modeling neural computation. Now that the details of the

neuromorphic system have been presented, it is possible to discuss this aspect in a

concrete way in terms of the power efficiency of this system. The calculation of the

power required by this neuromorphic approach can be calculated as follows:

Each neuron requires a 1nA bias current for the steady-state current through the

channels, 2 1nA bias currents for the Na amplifier circuit, 3nA static current for the

spike detector amplifier, and 3 1nA bias currents for the tunneling amplifier. These

bias currents are drawn from voltage supplies of 0.2V, 1.2V, 2.4V, 3.3V, and 14V.

This consumes about 33 nW of static power per neuron. Each gate waveform circuit

requires 3 1nA bias currents from a power supply of 3.3V, resulting in about 10nW

static power consumption. The AER module has 9 gates that are clocked at 25MHz,
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which consumes about 60uW of static power (estimating the capacitance per gate at

25fF).

Each spike is estimated to consume approximately 170pJ in the model neuron cir-

cuit, and the resulting gate waveform lines have a swing of about 2V on a capacitance

that is about 1pF. Accounting for the fact that there are two recurrent gate waveform

circuits that are activated by each neuron, this consumes 8pJ of energy per spike. In

the pulse timing circuitry for the gate waveform and the STDP circuits, each spike

causes a 3.3V swing on 56 logic gates, which have approximately 25fF of capacitance,

which consumes approximately 15pJ per spike. Each AER input and output event

requires 12 transitions of 3.3V digital lines (8 address and 4 handshaking), which

can be estimated at 15pF capacitances, which consumes in 2nJ per AER input or

output. The current that flows in each synapse in response to a presynaptic event

can be estimated as a 2nA current that is sustained for 2ms from a 6V supply. The

same current can be used as an upper bound on the current in the indirect FET that

is used for injection. Accounting for both of these currents in the synapse gives an

estimate of 48pJ per synapse event.

Given all of the above sources of power dissipation in the system, it is clear

that system power consumption in a simulation will depend on the network topology

and activity (see Chapter 6 for analysis of power in the specific networks described

there), but as an example, consider a fully connected network with 100 neurons and

200 AER inputs (for a total of 300 input synapses per neuron), with each neuron

and the AER inputs spiking at an average rate of 10 Hz. The power consumed

by this network is estimated at 200uW. By comparison, consider a method based on

integrating differential equations, using 4th order Runge-Kutta method and time step

of 50us. The neurons require about 200 32-bit multiply-accumulate (MAC) operations

per time step, while the synapses require about 20. Using the highest efficiency

implementation that has been reported, 100pJ/MAC [45], neglecting power used in
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Table 5: Estimated power consumption for a neuromorphic simulation of 100 neurons
and 30,000 synapses, wherein each neuron spikes at an average rate of 10 Hz. The
total power of 204 uW is about 6000 times smaller than the estimate of the power
required for running the simulation using numerical integration.

Load Power consumption
AER 183 uW

Synaptic currents 14 uW
Analog circuits (static power) 6 uW

Neuron spikes 0.2 uW
Total 204 uW

communication between processor(s) and memory (which is likely to consume even

more power than the actual computation, but is more difficult to estimate because it

depends on the implementation), this simulation would require approximately 1.25W,

almost 6,000 times more power than the neuromorphic implementation.

The contributions of the total power dissipation by the AER communication,

static power of the analog circuits, synapse currents, and neuron currents are given

in Table 5. Examining the relative contributions highlights the fact that the AER

communication consumes almost 90% of the system power. In a research roadmap

wherein the role of AER is restricted to facilitating an easy user interface for spiking

inputs and outputs of the whole network model, one expects that the number of

neurons and synapses could be increased by a much greater factor than the AER

inputs and outputs. This is because the number of primary sensory afferents or motor

efferents from the human brain is a negligibly small fraction of the total neurons.

Thus, as the system scales, the power consumption in the neuromorphic system should

be dominated by the neuron and synapse power consumption, which, based on this

analysis, are about a factor of 60,000 more efficient than the implementation based

in numerical integration.
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Chapter VI

COMPUTING WITH SPIKING NETWORKS ON NEURON

ARRAY IC

6.1 Introduction

It has been said that in order to fully understand something, one must figure out how

to build it. While this blanket statement may not be true in all cases, neuromor-

phic engineers believe that developing neuromorphic hardware will ultimately lead to

a better understanding of biological neural systems and the principles upon which

their computation is based. Neuromorphic systems are designed with the expectation

that they will be useful for improving our knowledge of neuroscience and computa-

tional science. These sciences in turn inform the design of improved neuromorphic

systems. This feedback path is illustrated in Figure 62, which emphasizes the role of

computational experiments performed on neuromorphic hardware. Experiments on

neuromorphic hardware not only inform future neuromorphic designs, but also have

significantly different constraints than numerical simulations have. Thus, such exper-

iments are expected to be a stimulant of creative approaches to thinking about neural

systems and computation. This chapter describes results from real-time simulations

of networks with up to 100 channel-based model neurons, which were run on the

neuromorphic IC described in Chapter 5. These networks perform computationally

relevant functions such as arbitrary spatio-temporal pattern generation and recogni-

tion, “winner-take-all” competition, stable generation of rhythmic outputs, “volatile

memory”, and a graph search algorithm that has applications for path planning in

robotics.
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Figure 62: Closing the loop around neuromorphic systems. Clearly, our understanding
of neuroscience and the theory of computation influences the designs of neuromorphic
systems. Additionally, by using neuromorphic hardware to perform nontrivial neural
modeling, we can gain new insights into those foundational sciences.

Section 6.2 describes a “Dot matrix” network and a synfire chain, which is im-

portant in several of the other networks studied here. Section 6.3 describes spatio-

temporal pattern detection and generation, a ring winner-take-all network, and a

bistable oscillator. The biological relevance of these networks is discussed, and mea-

sured data from network simulations on the neuromorphic IC are presented. Section

6.4 describes a graph search algorithm, its application to robotic path planning, and

presents measured results from this network. Section 6.5 analyzes the computation

performed by these networks and by the neuromorphic platform, with a comparison

to alternative approaches.

6.2 Basic networks: “dot matrix” and synfire chain

6.2.1 “Dot matrix” network

A dramatic demonstration of the functionality of all of the components of the signal

flow can be made by simulating a “dot matrix” network, wherein each neuron can be

caused to spike by applying an AER input to it. All 100 neurons in the chip were

given a stream of input events designed to result in a desired pattern when viewed in

a raster plot format. Figure 63 shows the network topology and the measured result.
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Figure 63: Results from “dot matrix” experiment. a) Diagram of the connectivity.
The synaptic weights are set sufficiently high that a single input reliably elicits a
spike from the target neuron. b) Measured outputs from this circuit. Only the
spiking output activity of the neurons is depicted, but the pattern of AER inputs is
essentially the same.

6.2.2 100-neuron synfire chain

Pools of neurons that are connected serially into a chain, called “synfire chains”, can

produce sequences of spikes with consistent timings each time the chain is stimulated.

This has been proposed as an explanation for some electrophysiological findings [1],

and several contexts for computational significance of this type of network have been

suggested [2, 4].

In order to make the most of the limited neurons available, the simplified network

topology depicted in Figure 64a (wherein each pool in the chain is modeled by a

single neuron) was simulated. A raster plot of the result of the simulation is also

shown in Figure 64b. The plot depicts the response of two successive spikes at the

input of the chain. Each spike starts a wave of activity down the chain. Note that

the second wave is initiated while the first wave is still propagating. The speed of the

wave propagation, which is determined by the delay in synaptic transmission and the

strength of the synaptic connections, averages about 1ms per synapse.
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Figure 64: Simulation results for 100-neuron synfire chain. a) Depiction of synfire
chain network. For the data shown here there are 100 neurons so N is 98. b) Raster
plot of spiking output resulting from two sequential inputs initiated at the beginning
of the chain. This results in two simultaneous waves propagating along the chain. c)
Raster plot of periodic behavior in the synfire chain when the neuron at the end of the
chain is connected back to the one at the beginning. d) measured propagation delays
for each neuron in the chain. The mean and +/- 1σ levels are shown by horizontal
lines. In b) and c), input spikes are denoted by vertical tick marks, while outputs are
denoted by open circles.
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This propagation delay is fairly consistent across all of the neurons in the chain.

The measured propagation delays are shown in Figure 64d. This kind of uniformity

would not be possible without the facility for trimming the synaptic waveform shaping

circuitry by programming floating-gate transistors. Some preliminary results about

this topic were shown in [12], and we have since fully integrated the approach into

the system for using the IC.

6.3 Computational networks

6.3.1 Spatiotemporal pattern generation and detection

The reliable timings demonstrated in the synfire chain make it useful for creating some

networks wherein spike timing is important in the information encoding scheme. For

instance, arbitrary spatio-temporal patterns can be detected by a network that has

a distinct synfire chain for each distinct input channel. The approach is illustrated

for a sequence of 4 spikes total on 2 inputs A and B, with the sequence ABBA and

intervals of 0.5 ms, 7.5 ms, and 4.5 ms separating sequential spikes.

The network that performs this detection is depicted with the raster plot of its

response to the input pattern of interest in Figure 65. If any of the four spikes in

this pattern are omitted or shifted by more than about 1 ms, the output neuron does

not spike. Getting the synaptic weights to a value such that the coincidence of all 4

inputs is necessary and sufficient to produce a spike in the output neuron required an

iterative process of programming weights and testing the response to inputs.

It is worth noting that sound localization in animals requires the detection of

delays in two input lines (the inputs coming from the two ears), and that a neural

structure that operates on a similar principle to the one presented here has been

characterized in the barn owl [40].
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Figure 65: Simulation results for spatiotemporal pattern detector network. a) Di-
agram showing network connectivity. Brackets indicate repeated units connected
sequentially to form a chain. b) Raster plot of activity in the network when the
tuned pattern of “ABBA” is given with the appropriate timings of 0.5, 7.5, and 4.5
ms separating successive inputs. Input spikes are denoted by vertical tick marks,
while outputs are denoted by open circles. The synfire chain “A” corresponds to
neuron numbers 2-42, chain “B” is numbers 43-82, and the output neuron is 89.
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Figure 66: Simulation results for spatiotemporal pattern generator network. a) Di-
agram showing network connectivity. Brackets indicate repeated units connected
sequentially to form a chain, and a “signal bus” notation is used to denote the various
connections from the synfire chain to the output neurons. b) Raster plot of activity in
the network in response to a single “pattern trigger” spike. Input spikes are denoted
by vertical tick marks, while outputs are denoted by open circles.

Arbitrary spatio-temporal patterns can also be generated using a similar approach.

The network shown in Figure 66a generates the sequence of spikes depicted the raster

plot in Figure 66b when its input is stimulated with a single spike. This kind of a

functionality could be useful in generating a precisely timed stereotyped motor output

from a neural system.

6.3.2 Ring Winner-Take-All (WTA) network

The WTA network models competition through lateral inhibition. It is a functional

block that is useful for performing classification tasks (for example, [53]), and it is

an integral part of many models of neural phenomena, especially regarding attention

[48]. An example of such a network that has six input neurons is shown in Figure 67.
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Figure 67: Results for 6-input WTA network. a) Diagram showing network connec-
tivity for ring winner-take-all. Arrows that terminate in small open circles are used to
denote inhibitory connections. b) Raster plot of this network for the “first-to-spike”
encoding scheme. In this scheme, the first neuron to spike in each burst of inputs
prevents the others from spiking. c) Raster plot of 5-input WTA for the rate encoding
scheme. The input rate to all neurons is 20Hz for the first 1.2s, after each of the 5
inputs sequentially receives a burst of stimulation at 320 Hz while the others maintain
20Hz stimulation. In b) and c), input spikes are denoted by vertical tick marks, while
outputs are denoted by open circles.
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A simulation with a 30-input winner-take all was run, and the results are depicted

in Figure 68. The duration of the post-synaptic currents of the inhibitory synapses

was set to 20ms in order to increase the effect of inhibition, and thus maximize the

competitive dynamics. The inputs were Poisson spike trains at a fixed average spike

rate of 1Hz, except for one input channel (the “winner”), whose input rates were varied

from 1Hz to 240Hz.

In Figure 68b, the resulting firing rates of all the neurons (averaged over 100

seconds of measurement) are shown for each input rate on the “winner” channel. The

average firing rate of the “winner” neuron strongly increases when its input rate is

increased, while the average firing rates of the others are suppressed. This illustrates

the competitive behavior that is the essential feature of this network. Figure 68a

depicts a sample raster plot of network activity for a case in which all neurons receive

inputs at an average rate of 1Hz for 10 seconds, and then a single input rate goes

to 240 Hz for 10 seconds. The increase in activity of the “winner” neuron and the

decrease of the others is apparent. The symmetry of the structure was verified, i.e.

all of the features pointed out here do not depend upon which neuron is selected to

receive the faster input stimulation.

It is interesting to note that since the dynamics of the neurons are different from

the simple integrate-and-fire models that are often used in spiking network simulations

(in particular, temporal integration does not play an important role over time scales

much greater than the duration of an action potential), using rate coding for a network

like this is not particularly natural. This is reflected by the fact that in this example

the duration of the inhibitory PSC needs to be extended in order to observe significant

competitive effects, and also by the rather gradual suppression of the “non-winning”

inputs as in firing rate of the “winner” is increased.
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Figure 68: Simulation results for 30-input ring winner-take-all (WTA) network. a)
Raster plot depicting a typical example of activity in the network when the input rate
for neuron 15 is 1Hz for 10s, and is then sustained at 240 Hz for 10s. The inputs on
the other neurons remain at 1Hz for the duration of the experiment. Input spikes are
denoted by vertical tick marks, while outputs are denoted by open circles. b) Plot of
average firing rates (over 100 seconds of measured data) of each of the 30 neurons,
shown for 6 different input rates on neuron 15 (again, with 1Hz input rate on all other
neurons). Note that the vertical axis is set up to approximately align with the axis
in a), and that a log scale is used for the horizontal axis in order to simultaneously
show the changes in rates of the “winner” neuron and the others. c) Firing rate of the
neuron 15 versus the input rate on neuron 15. d) Firing rates of the neurons other
than 15 versus the input rate on neuron 15. The population average is plotted with
a line.
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An encoding scheme that is more compatible with this system would be one in

which the inputs arrive in burst that could, for example, correspond to a particular

phase of a global oscillation in a neural system. The “winner” in each burst is the

neuron whose inputs arrive first. This type of encoding scheme has been proposed as

a mechanism by which real biological networks process data efficiently and with low

latency [64]. An illustration of a simulation of such a regime is shown for a 6-input

WTA in Figure 67b. In this experiment, the inhibitory PSC is only 1-2ms, and the

suppression of the later-arriving inputs is complete.

The “first to arrive” encoding actually has more in common with the rate encoded

system than one might expect. In the rate encoded system in Figures 67b and 68,

the first neuron to receive an input after the end of a given inhibitory PSC usually

elicits a spike from the inhibitory interneuron, thus preventing the other neurons in

the network from firing for a period of time. If the inputs to the neurons are Poisson

spike trains, the higher the average frequency on a given neuron’s inputs, the more

likely it is to be the first to spike. As the frequency of spikes on the input of the

“winner” neuron increases, the “winner” ends up getting this first spike more often,

so its spike frequency increases, and the interval between successive inhibitory spikes

decreases, which suppresses firing of the other neurons. This is the mechanism of

competition in the rate-encoded version of the ring WTA.

The mechanics of this network are nicely illustrated by examining a histogram

of the time since the preceding inhibitory action potential for each excitatory action

potential that is recorded. This is shown for the 30-input WTA data in Figure 69 (this

plot is constructed from the same data depicted in Figure 68b. Note that regardless of

input rates, there are very few excitatory spikes that occur during the inhibitory PSC,

which spans a period of about 20ms following the inhibitory spikes. The distribution
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Figure 69: Histogram of time since preceding inhibitory input for each excitatory
action potential for 30-input WTA. The average input rate on the “winner” neuron
is annotated on each strip. The effect of the “winner” neuron’s activity to reduce
the time between consecutive inhibitory spikes is apparent. Also, the suppression
of action potentials during the 20ms after the inhibitory action potential is clearly
visible.

of spikes after the end of the PSC is broad if the input rate of all of the neurons is low,

but becomes more sharply peaked as the input rate to the “winner” neuron increases.

6.3.3 Bistable oscillator

If the final neuron in the synfire chain depicted in Figure 64a is connected back to the

input of the chain, the propagating wave of action potentials will be restarted each

time it reaches the end of the chain, forming a stable oscillator. Given the refractory

period and synaptic delays in the system, this topology was found to produce a

stable propagating wave of action potentials using any synfire chain that is at least 4

neurons long. If the circuit also has a global inhibitory input, as depicted in Figure

70a, then the oscillations may be turned on or off by a single excitatory or inhibitory

input. This circuit is somewhat reminiscent of a central pattern generator (CPG),

with the global inhibition perhaps playing the role of neuromodulators that promote

or suppress rhythmic activity.
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Figure 70: Simulation results for bistable oscillator network. a) Schematic depiction
of network connectivity. b) Zoomed in depiction of the end of the data shown in c),
to illustrate the timing of the cyclically propagating wave of activity. c) Raster plot
showing activity of the network as the inputs drive it back and forth between the
stable oscillations and the stable fixed point. In b) and c), input spikes are denoted
by vertical tick marks, while outputs are denoted by open circles.
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This network has two stable dynamical states: the propagating wave, and the

quiescent state of no spiking (for a longer chain, multiple waves can propagate stably

at different phases). This bistability that can be controlled by two different inputs is

directly analogous to the digital latch circuit. Like the latch, this circuit’s dynamical

state stably stores a bit of information about the past inputs of the system. This

system is an example of recurrent excitation giving rise to multiple stable attractors

in a network’s dynamics, which is the essence of the well-known Hopfield model for

associative memory [22]. In fact, a Hopfield network with the same connectivity

captures the behavior demonstrated by this circuit.

Spiking activity recorded from this circuit is depicted in Figure 70.

6.4 Path planning

A configurable array of spiking neurons turns out to be a useful tool for solving a

class of problems in robotics known as path planning. One example of the problem,

depicted in Figure 71, involves an autonomous robot that is attempting to traverse

a maze. Or equivalently (and somewhat more realistically), the robot is attempting

to cross terrain that is filled with obstacles. This problem can be represented as a

graph by dividing the space into discrete regions, assigning a vertex in the graph

for each region, and using a directed edge between any pair of neighboring vertices

that are not separated by a barrier. This type of representation is depicted in Figure

71, which also shows how this graph can be translated into a network of neurons.

Each vertex in the graph is represented by a neuron, and directed edges between

vertices are represented by synapses. The synaptic weights of all synapses are made

sufficiently high that a presynaptic spike reliably triggers a post-synaptic spike. Thus,

a spike initiated at any location in the network propagates outward at a rate that is

determined by the synaptic delays.
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(a) (b) (c)

Figure 71: Context for robotic path planning problem. a) Picture of a maze (or
obstacle-filled landscape) that the robot must navigate. The robot starts at location
A, and is attempting to get to location C. b) Graphical representation of the im-
mediate neighborhood of the starting point (A) shown in a). Hash marks through
the edges connecting B to D and C to D indicate that these transitions are not al-
lowed (the graph will not contain these edges). c) Depiction of a set of neurons with
reciprocal connections to represent traversability.

If a spike is initiated at the start of the maze (or the robot’s initial location in

space), the shortest path to the goal can be found by observing the sequence of spikes

that eventually causes the first spike at the goal. If the neuron representing the goal

location never spikes, the robot can correctly conclude that there is no viable path

that will take it to the goal. The concept of path planning by emulating a propagating

wave in this manner is referred to as “wavefront planning”, an early example of which

is discussed in [21]. The idea that a network of neurons is capable of implementing

a wavefront planner has also been suggested previously [54]. However, this study is

the first demonstration of this method using neuromorphic hardware.

The following example illustrates the approach that was taken for this study in

more detail. The 100 neurons were used to represent a 10x10 grid in two dimensional

space. Obstacles were randomly generated in the grid, and the starting point and

goal were also chosen randomly. An example map, and its representation by neural

connections, is shown in Figure 72. A single input spike was provided to the neuron

representing the starting point via the AER receiver. The resulting activity in the
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(a) (b)

Figure 72: Illustration of example problem, a) in terms of the geometries of the
obstacles, and b) in terms of the synaptic connections among the neurons in the
array.

network was recorded by the AER setup described in Chapter 5. The sequence of

spikes that led to the first spike in the goal neuron was extracted from the recorded

AER data. This was done by a simple process: the first spike in the goal neuron was

identified, followed by the first spike among its neighbors. Then the first spike among

the neighbor of that neuron was identified, and so on, until the neuron at the starting

location was reached. The path that was found using this method is shown in Figure

73, along with a reduced raster plot and an analysis of the timing that separated pre

and post synaptic spikes along the path. This analysis shows that the synaptic delays

were very well matched.

An obvious question that arises is how much computation is saved by performing

the path planning with the aid of this network of neurons. A detailed analysis is

currently being performed by Scott Koziol, a colleague who is an expert in robotic

path planning. Intuition would suggest that replacing the search in path space (which
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(a)

(b) (c)

Figure 73: Illustration of solution to example path planning problem. a) Depiction
of the optimal path in the spatial representation. b) Raster plot of the activity in
the neurons that make up the path, ordered vertically according to their locations
along the path. This way of plotting the activity highlights the wave of activity that
ultimately results in the first spike at the goal neurons. c) Analysis of the synaptic
delays along the path. The delays are found to be fairly uniform at a little less than
1 ms per synapse.
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Figure 74: Flow chart depicting the two alternative approaches to path planning with
the neuromorphic IC. The AER infrastructure can be used together with a sequence
of simple searches in the recorded spike data to plan the entire path to the goal.
Then, the movement to the goal can be executed, and the process can repeat if there
is another goal location. Alternatively, the spike data need not be recorded, and thus
no post-processing of the spike data is required. This approach only provides a plan
for the next move, so the robot executes this move and then re-plans.

scales exponentially with the map size) with a sequence of highly constrained searches

among neighbors (a sequence that is only as long as the minimum path length) will

provide a large savings in computational effort, especially as the size of the graph

grows. Of course, performing this computation with neurons for a larger graph would

require hardware with more model neurons. This is a reasonable thing to plan for,

since the development of larger arrays of neurons is already a major focus of the

roadmap for this line of research, as discussed further in Chapter 8.

For robotic systems with limited computational resources (for instance, systems

without the capability of recording the stream of spike data from the AER output

of the IC), this approach is still viable, but with a small modification. If instead of

providing the stimulus spike at the starting location in the graph, it is provided at the

goal location, then the system need only wait for the first spike among the neighbors

of the robot’s current location. This spike will give the optimal choice of the next

move that the robot should make. This experiment could be performed repeatedly

as the robot traverses the region, once at each decision point. A comparison of these

two alternative schemes is depicted in Figure 74, which shows the original scheme for

comparison.
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In order to make sure that the intuition behind this algorithm is sound, a proof

of the completeness and optimality of the method was written (casting the algorithm

in graph theoretic terms). The proof, which is based on the approximation that all of

the synaptic delays are uniform, shows that this approach will identify the shortest

path between any two vertices of any directed graph (and will conclude that no path

exists if and only if there is actually no such path). It is interesting to note that

applications of path planning need not be restricted to 2-dimensional state spaces or

to uniform discretizations of the state space, two simplifying features of the example

that was presented here. In fact, any problem that can be mapped into a set of

discrete states, with a rule that describes what state transitions are allowed and what

transitions are forbidden can be solved equally well using this technique.

One further generalization is possible in a straightforward way. The synaptic

delays can be programmed to variable values in order to represent a continuously

variable cost for making each state transition. In order to avoid complicating the

inference of the path of wave propagation, all of the inputs to any given neuron must

have the same synaptic delay. A quick analysis concludes that this constraint can

be satisfied while still allowing a continuously variable cost at each grid location by

using multiple neurons to represent a single grid location (one neuron per distinct

cost among the grid location’s neighbors). I conjecture that a network constructed in

this manner, using the same method that was described for finding the shortest path,

would find the path of lowest total cost.

This generalization could have a nice application for the problem of maze nav-

igation. It is a known flaw with wavefront planners that, in problems with many

optimal paths, they tend to choose paths that move along obstacles. Moreover, if a

path can be shortened very slightly by traveling right next to an obstacle, the wave-

front planner will indeed choose this shorter path. This behavior is undesirable in

some robotic applications because it increases the risk of collisions with obstacles. A
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(a) (b)

Figure 75: Use of variable synaptic delays to represent a cost function associated with
different locations. In this maze, every location that borders an obstacle is assigned
an increased cost (representing the desire to leave margin around obstacles). In a),
the additional cost is low, and the planner charts a course that passes near all of
the obstacles, but minimizes the path length. In b), the additional cost is increased
sufficiently that the planner chooses the longer path that cuts a wide swath around
the obstacles.

desire to cut a wider swath around obstacles could be represented in an elegant way

by increasing the cost of edges in the graph that represent motion near obstacles.

The extent of this increase could be tuned to effect a choice in the tradeoff between

path length and margin for obstacle avoidance. In order to illustrate this concept,

this approach was applied to the problem of navigating the maze shown in Figure 75.

In this maze, every location that borders an obstacle is assigned an increased cost.

When the additional cost is low, the planner charts a course that passes near all of

the obstacles, but minimizes the path length. If the additional cost is increased, a

threshold is reached at which the planner chooses the longer path that cuts a wide

swath around the obstacles.

In order to gain some confidence in the robustness of the implementation of path

planning on this neuromorphic IC, the system was tested for a set of 55 randomly

generated (unweighted) maps. The result was completely successful. The algorithm
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found the shortest path for each map that had a path, and it also correctly identified

each map that did not have a path.

6.5 Conclusion

Having demonstrated modeling of multiple neural structures on this neuromorphic IC,

we turn our attention to the topic of what computation the networks are performing,

and how efficiently they are doing it. It is difficult to compare the computations done

by a network of neurons to those performed by a traditional computing structure such

as a microprocessor. The network of neurons is unable to find all of the eigenvalues

or the inverse of a matrix, while this task is straightforward for the microprocessor.

However, this does not mean that the network of neurons is not computing. In fact,

the neural network can effectively solve problems such as generating intricately timed

sequences of control commands, detecting specific patterns in input data, latching

and storing input data, implementing competitive comparisons among many input

channels simultaneously, and parallel graph search for path planning. These are all

useful functional blocks in sensory processing and motor control, and thus could form

important building blocks for sophisticated autonomous robotic systems.

Given that the networks studied in this work can perform useful computations, it

is interesting to ask what alternative approaches might yield the same computations.

The synfire chain could be implemented simply using an oscillator, a binary counter,

and a decoder. The pattern generation and pattern detection could then be imple-

mented by adding some combinational logic gates to the synfire chain outputs. The

volatile memory of the bistable oscillator could be performed simply with a latch.

Making a similar statement for the WTA requires specifying exactly what aspects of

the WTA behavior must be achieved. In the case that the WTA output is consid-

ered to be a “one-hot” encoding of the maximum of its inputs (replacing rate coding

with static inputs representing rates), the WTA could be implemented using a tree
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of comparators. If one requires outputs with finer granularity than 0’s and 1’s, then

matrix algebra would probably be required for any digital implementation. On the

other hand, an analog circuit such as the one described in [43] is able to perform this

function with few transistors and low power.

Of the computational tasks demonstrated on the neuromorphic IC, the path plan-

ning is the most difficult problem to implement on a digital computer. For the simpler

case of an unweighted graph, the problem is often solved in practice using the A* (“A-

star”) search algorithm [31]. This algorithm takes a significant amount of computing

resources, and in general the time complexity (roughly, the number of processor oper-

ations) scales exponentially with the length of the optimal path. If certain conditions

are met, the time complexity scales as a polynomial of the optimal path length.

In comparison, the run time of the neuromorphic algorithm scales linearly with the

length of the optimal path, and the number of spikes required (thus the energy used)

scales as a polynomial with order between 2 and 3.

If one is interested not only in the most expedient solution to a computational

problem, but instead has a specific desire to see how the problem might be solved

by a neural structure, then the computational solutions described in the previous

paragraphs are not acceptable. In this case, perhaps the most common approach

is to use a digital computer to numerically integrate model equations describing a

network and its constituent neurons and synapses. From a computational efficiency

standpoint, it is instructive to make a comparison between the power consumption

of running such a model simulation on a neuromorphic IC versus using numerical

integration.

The energy usage of the various blocks in the neuron IC was described in detail in

Section 5.6. Using the numbers described there, all of the networks presented in this

chapter were analyzed in terms of power consumption, comparing the neuromorphic

approach to the numerical simulation approach. The results are shown in 6.
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Table 6: Estimated energy to perform the network simulations presented in this work
on this neuromorphic platform versus a numerical integration approach.

Model Neuron Synapse AER Neuromorph. Num. Soln.
Description Energy (nJ) Energy (nJ) Energy (uJ) Energy (uJ) Energy (mJ)
Synfire chain 508 10 20 20 4.8
Pattern detect 221 0.4 10 10 2.0
Pattern gen. 41 2 4.5 4.6 0.35

WTA 1343 15 178 179 16
Bistable osc. 77 11 36 36 0.37
Path plan 85 27 2.5 2.4 0.57

Clearly a significant advantage in power efficiency is obtained, with the improve-

ment factor ranging from about 10x for the bistable oscillator to about 240x for the

synfire chain. While these numbers are not as impressive as the 6000x improvement

for the case discussed in Chapter 5, one important fact is immediately apparent from

examination of Table 5. The AER power completely dominates the power consump-

tion for these network simulations. If the AER power is neglected, the neuromorphic

approach becomes more efficient than the numerical integration approach by factors

ranging from 4,200 to 11,700. This is a relevant consideration because as the size

of the network simulation scales, the AER interface should not scale proportionally,

and eventually the power dissipation will be dominated by the power required by the

neuron and synapse models, as discussed in Chapter 5.

It seems relevant to reiterate here a fact that was mentioned in Chapter 1. Fun-

damental limitations about power consumption notwithstanding, a research group

with limited access to supercomputing resources can model relatively large (up to a

hundred neurons and thousands of synapses) networks on this neuromorphic system

in real time, whereas the same network simulations would be very time consuming

on a personal computer.

In summary, several interesting and useful computations were demonstrated on

a model neural structure simulated on neural hardware. These results are obtained

with a computational efficiency that is orders of magnitude better than that offered by
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the approach of numerically integrating model equations. However, the computations

performed by these neural models is, at best, only marginally competitive with the

best custom (non-neural) solutions for performing the same computations (with the

possible exception of the path planning computation). To the my knowledge, the same

could be said of any applied computation that has been demonstrated on any other

neuromorphic platforms that are intended for network simulations. In fact, work

demonstrating computation in networks of neurons on a neuromorphic simulation

engine are very rare. One other notable example of such work was performed by the

Heidelberg group [13]. That study provided significant inspiration for the present

work, and the fact that both of these systems use PyNN should make it easier for

results to be compared across these two platforms.

The scarcity of implementations of neural computation in neuromorphic hardware

should not be seen as an indication that models of neural systems on configurable

neuromorphic platforms cannot outperform other approaches. To the contrary, I

believe that such systems have enormous potential to compete in applications, a

potential that will increasingly be realized as neuromorphic platforms continue to

improve. The current status of the field merely reflects the fact that the mainstream

computational approaches have benefited from significantly more time and money

invested in development. Because the neuromorphic approach is much less constrained

by fundamental limitations, further development in this field has enormous potential

to outpace the traditional approach.
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Chapter VII

LEARNING IN SPIKING NETWORKS

In 1945 Donald Hebb published a book entitled “The Organization of Behavior”,

which was very influential in the field of neural computation [34]. In the book, Hebb

hypothesized that when a pre-synaptic neuron repeatedly takes part in causing a

post-synaptic neuron to spike, the strength of the synapse is increased. This pro-

cess, which came to be known as Hebbian learning, receive sufficient support from

electrophysiological data that it came to be accepted as an important part of how

animals learn behaviors. In the 1980s and ’90s, electrophysiological studies were car-

ried out to characterize how a form of Hebbian learning in which changes in synaptic

strengths result from repeated pairings of pre and post-synaptic spikes at a synapse.

In 1998, Guoqiang Bi and Mu-Ming Poo used cultured hippocampal neurons to fully

characterize the dependence of the weight change upon the timing of these pre and

post-synaptic spikes [10]. The showed that a pre-post pairing results in strengthening

of the synapse and a post-pre pairing results in weakening and that in both cases, the

extent of the change to the synapse decreases strongly with increasing time, becoming

negligible within tens of milliseconds. The phenomenon is referred to as spike timing

dependent plasticity (STDP). It has been observed in many electrophysiological ex-

periments in different preparations, and plays an important role in many models for

learning [15].

7.1 Two-synapse model

The simplest network of neurons that can be simulated with STDP is the associative

learning model shown in Figure 76. In this model, two different synapses connect

to the same neuron, and the activity on the two synapses is correlated. Specifically,
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the time separating activation of the two synapses is the same. Moreover, one of

the synapses is sufficiently strong that it reliably produces a post-synaptic spike, and

STDP at this synapse is not enabled. This setup is the simplest way to shown the

learning properties of a single synapse within a network context. Figure 76 shows the

change in synaptic current that results from 50 pulse pairings as a function of the

time difference between the onset of the STDP-enabled synapse’s activation and the

post-synaptic spike. It is worth noting that in this figure (as well as several others

in this chapter), synaptic currents are measured by the voltage produced by forcing

the current through a series of two diode-connected nFETs. The subthreshold model

I
I0

= exp(0.7
2
4V
0.025

) can be used to convert changes in diode voltage into relative changes

in synaptic current. For instance, a 10-mV change in diode voltage corresponds to a

change in synapse current of about 15%. Figure 76 also shows how the strength of

potentiation increases as the voltage used for injection is increased. This dependence,

which is expected on the basis of the characteristics of pFET channel hot electron

injection, can be used to speed up or slow down the rate of learning (i.e., to scale the

amplitude of the characteristic shown in Figure 76a).

7.2 Multi-synapse interactions

Several interesting features of synaptic plasticity can be observed by testing various

patterns of inputs among a set of synapses that all target the same neuron, as shown in

Figure 77. This is a simple framework for studying how the dynamics of plasticity at

multiple synapses are coupled together through the post-synaptic neuron dynamics,

and how input patterns can drive learning that changes the response properties of

the post-synaptic neuron.
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Figure 76: Two-synapse model for investigating the effect of STDP. The setup of
the experiment and the resulting change in synaptic weights are shown in a). The
horizontal axis in a) is equivalent to post-synaptic minus pre-synaptic spike time. In
b), the evolution of the synaptic weights with repeated potentiations is shown for a
variety of different injection voltages. In both plots, the synaptic strength is measured
by the voltage produced by forcing the current through a series of two diode-connected
nFETs. The subthreshold model I

I0
= exp(0.7

2
4V
0.025

) can be used to convert changes in
diode voltage into relative changes in synaptic current.

7.2.1 Methods: weight initialization and rate-coded input pattern gener-
ation

In all of the experiments presented in this section, the synaptic weights of the neurons

are initialized at a level that is sufficiently weak that a single synaptic input is unable

to produce a post-synaptic spike, but strong enough that two or more synaptic inputs

arriving simultaneously will produce a post-synaptic spike. Because the synaptic

weight depends on both the floating-gate charge stored on the synapse transistor and

the amplitude of the gate waveform signal that drives the synapse, the highest floating-

gate charge that will still reliably produce a post-synaptic spike varies from synapse

to synapse (since there is still some small mismatch in gate waveform amplitudes).

A software routine was developed to experimentally determine this threshold value

of floating-gate charge for each synapse, and then in the network experiments that

follow, each synapse was initially programmed with a weight that was reduced from
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that threshold by about 10-15%.

Because biological neurons are often observed to spike at roughly constant average

frequencies in response to stimuli, but the patterns are not periodic, it is common

practice to model neural spiking patterns as Poisson processes. For the studies in this

section that involve rate coding, this tradition was observed. One interesting feature

of the Poisson process is that the distribution of the timings that separate subsequent

events (the inter-spike intervals in this case) exponentially decreases with time, so the

maximum of this distribution occurs at 0 time difference. This distribution results

in a tendency for spikes to “cluster” in time. As discussed in Chapter 5, inputs that

arrive within short times of each other cause a “paired pulse facilitation” effect. While

this effect could have some interesting consequences for the network’s behavior, it is

desirable to have a baseline case in which this paired-pulse facilitation effect does not

affect the outcome. For that reason, for the experiments described in this section that

require rate-coded inputs, the timing of these inputs was generated as follows. An

exponentially distributed sequence of inter-spike intervals was randomly generated.

Then all of the inter-spike intervals that were shorter than the duration of the gate

waveform (3-5ms) were removed, and the resulting sequence of interspike intervals

was then used to define the spike times.

7.2.2 Potentiation of synchronous inputs

One important intuitive element of Hebbian learning is the fact that multiple synapses

onto a single neuron should cause that neuron to fire if they synchronize, and that

this process should result in a strengthening of these synapses. This phenomenon

is illustrated in dramatic fashion by the experiment displayed in Figure 77. In this

experiment there are three excitatory synapses onto a single neuron. Initially, none

of the synapses are strong enough to single-handedly cause a post-synaptic spike.

However, when all three of the synapses are activated simultaneously, they are able
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Figure 77: Potentiation of synchronous inputs. a) shows the network under consider-
ation, in which multiple synapses all drive a single neuron. b) Raster plots from the
three phases of the experiment. In the top pane, the response of the neuron in the
initial state is shown, in which each input is activated individually and they all fail
to elicit a post-synaptic spike. In the center pane, the training process is depicted, in
which all three synapses are repeatedly activated simultaneously, each time eliciting
a spike in the target neuron. In the bottom pane, the result of strengthening the
synapses is demonstrated by presenting the same stimulus that was used in the initial
state, but this time each individual synapse is able to elicit a post-synaptic spike.

to cause a spike. When this synchronous pattern is presented repeatedly, the synaptic

weights get strengthened to the extent that any single one of the synapses is capable

of stimulating a spike in the post-synaptic neuron.

7.2.3 Competition among rate encoded inputs

Another important characteristic of Hebbian learning is that it provides a mechanism

of competition among the synapses, wherein the input synapse that has the pattern

of activity that is most likely to produce spikes in the post-synaptic neuron gets

strengthened more than the other synapses onto the same neuron. A simple demon-

stration of this process can be made by using the network in Figure 78 with 10 inputs,
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driven by a set of rate-coded Poisson inputs, one of which has a higher frequency than

the others. This input is more likely than the other inputs to contribute to the firing

of the target neuron, which results in preferential potentiation of this synapse. As

the synapse gets strengthened, the firing rate of the target neuron increases. There

is a sharp increase in the firing rate of the target neuron when the “winning” in-

put becomes sufficiently strong to cause a spike without any contribution from the

other synapses. Eventually, the “winning” synapse gets potentiated so strongly that

it clamps the membrane potential of the neuron to the excitatory synaptic reversal

potential Eexc. From this point on, the neuron is unable to spike.

In order to verify the symmetry of this effect with respect to the various inputs,

the experiment was run 10 different times, each time with a different input receiving

an elevated input rate. The results, depicted in the form of a histogram of the final

weights (pooled across the 10 trials) in Figure, show that in general this phenomenon

does hold true. In most of the cases, the inputs that received elevated input rates

increased their synaptic weights while the weights of the others were moderately

decreased. However, in a few of the trials, one of the synapses with the lower input

rate actually ended up getting strongly potentiated while the others where depressed.

The cause of this unexpected result was that because of mismatch and the random

chance in the input timings, that channel got potentiated early in the course of the

experiment. Because of the positive feedback inherent in this kind of competitive

learning, the initial strengthening of the synapse led to further strengthening until

ultimately the synapse dominated the spiking of the target neuron in spite of its lower

input rate.

140



www.manaraa.com

3.5 4 4.5 5 5.5 6

0

1

2

3

4

5

6

7

8

9

10

Time (s)

A
dd

re
ss

es

(a) (b)

Figure 78: Competitive learning among 10 synapses on the same neuron. Nine of
the synapses receive rate-coded inputs at a low rate, while one receives a high rate of
inputs. The inputs and resulting spiking behavior are shown in a). As the input with
the elevated firing rate gets potentiated, the firing rate of the target neuron increases.
This synapse attains a strength that is sufficient to always cause a post-synaptic
spike, which results in steady potentiation. Eventually, this leads to the synapse
becoming so strong that it clamps the membrane of the postsynaptic neuron to Eexc
(the excitatory reversal potential), preventing any further spikes. b) Histogram of
changes in synaptic weights pooled across 10 experiments of the type shown in a).
The distribution is clearly separated into neurons that experienced a positive feedback
process of potentiation and neurons that experienced a moderate depression. The
inset shows the evolution of the synaptic weights during the experiment.
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7.2.4 Learning from correlations in the presence of noise

Having established that synchronization of the inputs can result in strengthening of

the inputs in the tightly controlled experiment described in Section 7.2.2, an obvious

follow-up question is how robust this process is to random perturbations In order to

address this question, the same experiment was run, only with 10 inputs. The timing

of the inputs was determined as follows. All inputs had an average rate of 20 Hz.

Seven of them were generated according to a Poisson process as described in Section

7.2.1. The other three were generated as the superposition of two processes: 1) a

15-Hz Poisson process, and 2) a 5-Hz input that was synchronized across all three

channels. The interesting result of the simulation, depicted in Figure 79, was that

even in the presence of noise in the form of uncorrelated spiking and random inputs

on seven other channels, the three correlated inputs were potentiated while all of the

other inputs were depressed. This result illustrates the power of this simple learning

rule to pick out the structure that is present in a high-dimensional and seemingly

unstructured data set (seemingly unstructured in the sense that any person examining

the input spike patterns would probably overlook the correlations among the three

input channels and conclude that all of the inputs are random).

7.2.5 Receptive field formation

One of the interesting phenomena that is exhibited by neural systems is a self or-

ganization into receptive fields based upon the statistics of the input data. There

have been numerous modeling studies that have helped elucidate the role of synaptic

plasticity in this process [44, 25, 20]. There are many questions that remain open

in this field, including the nature of the encoding of inputs, the interaction between

the input encoding and the details of the neuron dynamics, and the implications of

the details of the rule governing synaptic plasticity (especially questions of long-term
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Figure 79: Results of experiment where synchronized inputs among channels 0, 5, and
9 were sparsely mixed with random, uncorrelated inputs. All other synapses received
only random uncorrelated inputs such that the average rates on all inputs was the
same. The synapses that had correlated activity were potentiated while the others
were depressed.
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Figure 80: Simplistic model for initial studies of receptive field formation early in the
visual pathway. A single neuron receives 49 input synapses, each associated with a
pixel in a 7x7 monochromatic image. The image shown in a) is repeatedly presented
to the network, using a “time to spike” encoding of the pixel brightness on each
synapse. The evolution of the synaptic weights over repeated presentations of the
input is shown in b). The blue traces, which represent the synapses on the bright
half of the image, tend to get potentiated, while the others tend to be depressed.

stability with STDP).

While the study of these questions using this neuromorphic platform is in its

infancy, some interesting observations can still be made by considering an extremely

simplified model of receptive field formation in the early visual pathway. The model

consists of a single input neuron with 49 input synapses, each of which is associated

with a pixel in a 7x7 monochromatic image. In the experiment, the initial synaptic

weights are all uniform (with random, mismatch-related variations). The neuron

is repeatedly presented with the high-contrast image shown in Figure 80, and the

evolution of the synaptic weights is recorded after each image presentation. In this

experiment, a “first-to-spike” encoding is used, in which all of the inputs spike once in

response to each image presentation, and the brighter the pixel, the earlier the spike

occurs. Not surprisingly, the group of synapses representing the bright pixels in the

image get potentiated with respect to those representing the dark pixels.
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Perhaps more interesting is the fact that there is significant spread in the learn-

ing rates for the different synapses, resulting in an increasingly varied population of

synaptic weights, as shown in Figure 80. A few synapses outpace the rest, and in ex-

periments with less synchronized input patterns, these “fast-potentiating” sysnapses

end up dominating the spiking behavior of the target neuron, resulting in depression

of all of the other synapses. This positive feedback is a common feature of Hebbian

learning, and modelers often deal with it by setting maximum and minimum limits

on the synaptic weights that can be achieved through learning. The possibility of

taking such an approach by choosing tunneling and injection parameters such that

the synaptic weights naturally saturate upon reaching some high level. Preliminary

characterization of the injection and tunneling rates’ dependence on the floating gate

voltage confirms the intuition that such a saturation will happen (as the floating gate

voltage decreases, the rate of tunneling increases while the rate of injection eventually

declines). However, it appears that the weight at which this saturation occurs will al-

ways be extremely large (regardless of the voltages used for injection and tunneling),

which is undesirable because ideally the weight should be confined to an arbitrarily

specifiable range.
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Chapter VIII

CONCLUSIONS AND FUTURE DIRECTIONS

Chapter 1 described the motivation behind neuromorphic engineering and analog

computation and introduced the foundation of this research: analog VLSI, floating-

gate transistors, and subthreshold circuit design. Chapter 2 described the hardware,

software, and algorithms that were developed in order to enable the design and appli-

cation of large-scale systems based on floating gate transistors. As an example, these

tools were applied for the demonstration of a variety of circuits for analog signal pro-

cessing on a field-programmable analog array. Chapter 3 presented new observations

about the characteristics of electron tunneling in the individual floating gate transis-

tor, and applied novel characterization techniques to the examination the behavior

of populations of these devices in an array. Chapter 4 presented a novel FPAA that

facilitates the implementation of a special class of circuits with adaptive capabilities

that are enabled by continuous-time hot electron-injection and tunneling. The prop-

erties of the floating-gate nFET, including the newly-observed transition between hot

electron injection and hot hole injection. Several canonical circuits demonstrating

floating-gate based adaptation were implemented. Chapter 5 explained the archi-

tecture and circuit-level design of a configurable neuromorphic IC that features 100

channel model-based neurons capable of implementing STDP, 30,000 synapses for in-

terconnect, and an AER interface. Measured data demonstrating the functionality of

all of the blocks was shown. Chapter 6 showed how this neuromorphic IC can be ap-

plied to simulate networks of neurons with interesting computational features such as

spatio-temporal pattern generation and detection, winner-take-all competition, stable

nonvolatile memory, and wavefront-based path planning. Finally, Chapter 7 described

146



www.manaraa.com

studies of STDP-based synaptic plasticity in networks on neurons simulated using the

neuromorphic IC.

The results presented in this thesis constitute significant advances along this par-

ticular line of research in neuromorphic engineering. This is the first time that a

system has allowed simulations of more than a few neurons of this type to be per-

formed. In fact, the neuron array IC presented here is the largest array ever built

using any type of neurons models other than the very simplistic integrate and fire

model. It is one of only a few neuromorphic IC designs in the world that has the ca-

pability of implementing networks with STDP. It offers a significant advantage over

many other designs in that the pervasive use of floating-gate technology in the IC

provides the ability to cancel device mismatch due to process variation and also the

flexibility to tune a wide variety of parameters in a very compact manner. While

the development of this neuromorphic IC was a significant accomplishment, equally

important was the development of the necessary tools to get the most out of this

system.

After taking a moment to appreciate all of this great progress, I will indulge

in echoing the eternal refrain of the researcher: “The current results are just the

beginning. Listen to what we can do in the future...”. This is the fun part, wherein

we can zoom out our perspective to the highest level (much like the prince of all

cosmos after rolling up everything in the world into a Katamari), and look forward at

the possibilities in the future, setting aside the technical details that consume the days

and sleepless nights of engineers. One of the exciting possibilities for the future of this

research is the scaling up to larger networks. We have estimated that an IC that fills

an entire reticle (2.5 cm on a side) in 350nm CMOS could implement 3 to 5 thousand

neurons and about a million synapses. Moreover, if the density scales proportionally

to the square of the process feature size, a die of that same size in a modern process

such as 22nm or 45nm could contain hundreds of thousands of model neurons and
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hundreds of millions of synapses. The scale could be increased another order of

magnitude or more by making use of 3-dimensional IC fabrication technologies. With

all of this scaling, these millions of neurons and billions of synapses all would fit

within about a cubic inch of matter. If a larger size like a desktop computer (or

even a supercomputer) were allowable, techniques such as wafer-scale integration and

systems employing networks of multiple neuromorphic chips could be used to scale up

another order of magnitude or two. For perspective, it’s interesting to note that at

this size (say, for example, 100 million neurons and 100 billion synapses), the system

is still a few orders of magnitude short of the scale of the human brain. This is a

testament to the marvel of nanotechnology that is the cellular machinery by which

biological neurons are able to self-assemble into a fully developed brain.

All of this talk about scaling brings to mind some important questions, the

first of which is “what will we do with these enormous piles of model neurons and

synapses?”. This is the important challenge that faces systems neuroscientists, re-

gardless of whether they use neuromorphic hardware or more conventional methods

of computational modeling. It is easy to answer the question in a vague way, to say

“We will use these computational models to test hypotheses about how biological

neural systems perform computation”. This is a valid answer, and in fact it is the

best answer that we have, but putting this plan into practice is going to be chal-

lenging. The problem is analogous to putting together a vast jigsaw puzzle without

having an image of the completed puzzle to use as a reference. Each researcher in

the community has taken up some sets of pieces, and proposed models that fit several

pieces together. Some of these models are bound to correct, and some will prove to

be incorrect. Other researchers are surveying the existing fragments and speculating

as to what the whole picture may look like. In this analogy, to test a hypothesis

about neural computation is to ask whether a proposed fragment of several puzzle

pieces is put together correctly. The obvious difficulty is that the answer depends
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on the context. It depends upon what the rest of the puzzle turns out to look like.

It is difficult to really know for sure whether a model of a particular functional or

anatomical element in the nervous system has correctly captured the essence of the

computation of that element unless one also has a good model for computation in

the whole nervous system. While this problem is very difficult, the outlook is not

hopeless. In the problem of the jigsaw puzzle, any time a group of pieces fit together

to create an image of a recognizable object, it would be reasonable to conclude that a

correct configuration of those pieces has been found, even without having the rest of

the puzzle completed. In the same way, we can gain some confidence in neural models

that are demonstrated to perform successfully in a concrete application (recognizing

a spoken word, a face, or the scent of food, to cite some possibilities from the field of

perception). The goal, then, is to continue to strive for understanding of how multiple

functional blocks fit together to support the intelligence of an animal, and simultane-

ously to explore and attempt to validate models of the functional blocks themselves.

This will be a challenging process that will require innovation and creative thought

on the part of many scientists.

The second question with regards to the scaling is how the architecture of the neu-

ron IC presented in this thesis will handle orders of magnitude of scaling. There sev-

eral of promising aspects of the approach. Firstly, the use of floating-gate transistors

should limit the detrimental effects of device mismatch that plague the most modern

(smallest feature-size) processes. Secondly, the low-power design techniques employed

in this approach should make the crucial problem of thermal management (which is

a major limitation in modern digital processors) much more tractable. Thirdly, the

computation in the system is performed according to the same parallel, distributed

model that is used by biological neural networks, which makes it easy to scale the

system to model more neurons. One aspect of the design will not hold up well to

scaling over many orders of magnitude. On this neuron array IC with 100 neurons,
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it was reasonable to support a fully configurable architecture that allows all-to-all

connectivity among the neurons. This approach requires a number of synapses that

increases quadratically with the number of neurons, which would be hard to sustain

and would result in many orders of magnitude more synapses per neuron than what

is observed in real nervous systems. How will this problem be addressed? One possi-

bility would be to arrange the neuromorphic IC into a hierarchy of smaller networks,

where the available synaptic connections are dense in each neuron’s immediate lo-

cality, but increasingly sparse at the more global levels of the hierarchy. Since this

could potentially constrain the set of models that could be implemented on the sys-

tem, these design choices would have to be informed by surveys of the topologies of

network models to be simulated. A second concern is regarding the AER interface

to the IC. On the one hand, when analyzing simulations it would be ideal to have a

record of all of the spike times of all of the neurons. On the other hand, for networks

with a large number of neurons, such a data stream becomes difficult to communicate,

store, and even analyze. This issue will likely be handled by reducing the number

of neurons that are can be directly read or stimulated by way of the AER interface

during a single experiment. It is conceivable that the system could maintain access

to all neurons in a configurable way, such that the user specifies which neurons will

receive AER inputs, and which ones will have their spiking activity reported over the

AER interface. Alternatively a set of neurons may explicitly be designated as “hidden

layer neurons” (the multi-layer perceptron terminology seems appropriate here), with

others being specified as “input neurons” or “output neurons”, each set having the

corresponding AER connectivity.

In summary, the jigsaw puzzle that is neural computation will be pieced together

by efforts to find neural models that perform useful computational tasks, and by con-

tinually striving to understand how the various models can combine together to form

an intelligent system. This process will require countless model network simulations
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as a means of testing hypotheses and validating the performance of pieces of the puz-

zle. The tools and techniques presented in this thesis have tremendous potential to

aid in this process, and I await the future progress in this field with great anticipation.
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